Answer:
Capacitance of cylindrical capacitor does not depends on the amount of charge on the conductors
Explanation:
Consider a cylindrical capacitor of length L, inner radius R₁ and outer radius R₂, permitivity ε₀ constant then capacitance of cylindrical capacitor is given by:
From this equation it is clear that capacitance of cylindrical capacitor is independent of the amount of charge on the conductors where as directly proportional permitivity constant and length of cylinder where as inversely proportional to natural log of ratio of R₂ and R₁
Answer:
The reactance of the capacitor
Explanation:
In an AC circuit containing different elements (capacitors, resistors and inductors), we cannot simply calculate the equivalent resistance of the circuit, so another quantity is used, which is called reactance.
For a capacitor, the reactance is given by:

where:
f is the frequency of the AC current in the circuit
C is the capacitance of the capacitor
The reactance has a similar meaning to that of the resistance for a DC current. In fact, we notice that:
- When f=0 (which means we are in regime of DC current, because the current never changes direction), the reactance is infinite. This is correct: in a DC circuit, the capacitor does not let current pass through it, so it like it has infinite resistance (=infinite reactance)
- When f tends to infinite, the reactance becomes zero: in such situation, the current in the circuit changes direction so quickly that the capacitor has no enough time to "block" the current in the circuit, so it like it has almost zero resistance (zero reactance).
Answer and Explanation:
Data provided in the question
Force = 50N
Length = 5mm
diameter = 2.0m = 
Extended by = 0.25mm = 
Based on the above information, the calculation is as follows
a. The Stress of the wire is

here area of circle = perpendicular to the are i.e cross-sectional i.e
= 
= 
Now place these above values to the above formula

= 15.92 MPa
As 1Pa = 1 by N m^2
So,
MPa = 10^6 N m^2
b. Now the strain of the wire is

= 
Explanation:
formula for energy is k. e = ½mv²
m= 9
v= 75
k. e = ½×9×75 =337•5
The is organic compound with the correct chemical formula C4H9O2.
<h3>What is a model?</h3>
A model is a representation of reality. A model serves the purpose of prediction as well as explanation.
Looking at the model of the molecule we can see that it is the organic compound with the correct chemical formula C4H9O2. The molecule is shown in the image attached to this answer.
Missing parts:
There are several ways to model a compound. One type of model is shown.
What is the chemical formula for the molecule represented by the model?
CHO
C4H9O2
C4H8O
C3H8O2
Learn more about molecular models:brainly.com/question/156574?
#SPJ1