Answer:
Radiation is the emission or transmission of energy in the form of waves.
Explanation:
.
Answer:
0.82 mm
Explanation:
The formula for calculation an
bright fringe from the central maxima is given as:

so for the distance of the second-order fringe when wavelength
= 745-nm can be calculated as:

where;
n = 2
= 745-nm
D = 1.0 m
d = 0.54 mm
substituting the parameters in the above equation; we have:

= 0.00276 m
= 2.76 × 10 ⁻³ m
The distance of the second order fringe when the wavelength
= 660-nm is as follows:

= 1.94 × 10 ⁻³ m
So, the distance apart the two fringe can now be calculated as:

= 2.76 × 10 ⁻³ m - 1.94 × 10 ⁻³ m
= 10 ⁻³ (2.76 - 1.94)
= 10 ⁻³ (0.82)
= 0.82 × 10 ⁻³ m
= 0.82 × 10 ⁻³ m 
= 0.82 mm
Thus, the distance apart the second-order fringes for these two wavelengths = 0.82 mm
Answer:
d) 1.2 mT
Explanation:
Here we want to find the magnitude of the magnetic field at a distance of 2.5 mm from the axis of the coaxial cable.
First of all, we observe that:
- The internal cylindrical conductor of radius 2 mm can be treated as a conductive wire placed at the axis of the cable, since here we are analyzing the field outside the radius of the conductor. The current flowing in this conductor is
I = 15 A
- The external conductor, of radius between 3 mm and 3.5 mm, does not contribute to the field at r = 2.5 mm, since 2.5 mm is situated before the inner shell of the conductor (at 3 mm).
Therefore, the net magnetic field is just given by the internal conductor. The magnetic field produced by a wire is given by

where
is the vacuum permeability
I = 15 A is the current in the conductor
r = 2.5 mm = 0.0025 m is the distance from the axis at which we want to calculate the field
Substituting, we find:

B. Transverse Wave this is the correct answer
Answer: the sun's rays is one of the raw Materials recquired by plants to make food
Explanation:plants trap light used in splitting water into hydrogen ions and oxygen molecules