The floor exerts 20 N of force on the chair
Explanation:
We can answer this question by using Newton's third law, which states that:
<em>"When an object A exerts a force (called action) on an object B, object B exerts an equal and opposite force (called reaction) on object A"</em>
In this problem, we can identify:
- Object A as the chair
- Object B as the floor
This means that the force of 20 N exerted by the chair on the floor is the action, and so the force exerted by the floor on the chair is the reaction. Newton's third law states that these two forces are equal and opposite: therefore, the force exerted by the floor on the chair is also 20 N, but in the opposite direction.
Learn more about Newton's third law:
brainly.com/question/11411375
#LearnwithBrainly
Answer:
Mount Rushmore is a very well built sculpture. It is visited by millions of people each year to see 60-foot tall images of the American presidents; George Washington, Thomas Jefferson, Abraham Lincoln and Theodore Rosevelt which are carved into the Black Hills of South Dakota. Mount Rushmore has faced many controversies too. The land it was built on is sacred to Native Americans. The Sioux were also forced to leave the land, after lots of battles
Explanation:
<h2>distance = 523 cm</h2>
Explanation:
( a ) The rotational speed of the ladybug = 25 r.p.m = 25/60 r.p.s
= 5/12 rev/sec
( b ) The definition of frequency is the number of rotations per second .
Here the number of rotations per second is 5/12 . Thus frequency = 5/12 Hz
( c ) The tangential speed is v = angular velocity x radius of rotation
The angular velocity ω = 2π x n , where n is the number of rotations per second
Thus angular velocity = 2π x 5/12 = 5π/6 rad/sec
The linear velocity = angular velocity x distance from center of record
Thus tangential speed = 5π/6 x 10 = 25π/3 cm/sec
Angular displacement in 20 sec = ω x t = 5π/6 x 20 = 50π/3 rad
Linear displacement = angular displacement x distance from center of record
= 50π/3 x 10 = 500π/3 = 523 cm
His velocity is 3 m/s in the direction in which he is running in. which.