Answer:
d) What is the force if we doubled both the masses AND we doubled the distance
Answer:
Speed will be equal to 1.40 m/sec
Explanation:
Mass of the rubber ball m = 5.24 kg = 0.00524 kg
Spring is compressed by 5.01 cm
So x = 5.01 cm = 0.0501 m
Spring constant k = 8.08 N/m
Frictional force f = 0.031 N
Distance moved by ball d = 15.8 cm = 0.158 m
Energy gained by spring

Energy lost due to friction

So remained energy to move the ball = 0.0101 - 0.0048 = 0.0052 J
This energy will be kinetic energy


v = 1.40 m/sec
Answer:
Time = 11.60 seconds.
Explanation:
Speed can be defined as distance covered per unit time. Speed is a scalar quantity and as such it has magnitude but no direction.
Mathematically, speed is given by the equation;

Given the following data;
Speed = 0.711m/s
Distance = 8.25m
To find the time;
Making time the subject of formula, we have;
Substituting into the equation, we have;

Time = 11.60 secs.
We have
. So,
.
. So
.
Thus we can convert the units of the given quantity.
That is,
.
The quantity is converted to the required units.