1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luba_88 [7]
2 years ago
15

A wire is formed into a circle having a diameter of 10.0cm and is placed in a uniform magnetic field of 3.00mT . The wire carrie

s a current of 5.00 A. Find (b) the range of potential energies of the wire-field system for different orientations of the circle.
Physics
1 answer:
Paul [167]2 years ago
3 0

The range of potential energies of the wire-field system for different orientations of the circle are -

θ                  U

0°             375 π x 10^{-7}

90°              0

180°        - 375 π x 10^{-7}

We have current carrying wire in a form of a circle placed in a uniform magnetic field.

We have to the range of potential energies of the wire-field system for different orientations of the circle.

<h3>What is the formula to calculate the Magnetic Potential Energy?</h3>

The formula to calculate the magnetic potential energy is -

U = M.B = MB cos $\theta

where -

M is the Dipole Moment.

B is the Magnetic Field Intensity.

According to the question, we have -

U = M.B = MB cos $\theta

We can write M = IA (I is current and A is cross sectional Area)

U = IAB cos $\theta

U = Iπr^{2}B cos $\theta

For $\theta = 0° →

U(Max) = MB cos(0) = MB =  Iπr^{2}B = 5 × π × ( 0.05 ) ^{2} × 3 × 10^{-3} =

375 π x 10^{-7}.

For $\theta = 90° →

U = MB cos (90) = 0

For $\theta = 180° →

U(Min) = MB cos(0) = - MB =  - Iπr^{2}B = - 5 × π × ( 0.05 ) ^{2} × 3 × 10^{-3} =

- 375 π x 10^{-7}.

Hence, the range of potential energies of the wire-field system for different orientations of the circle are -

θ                  U

0°             375 π x 10^{-7}

90°              0

180°        - 375 π x 10^{-7}

To solve more questions on Magnetic potential energy, visit the link below-

brainly.com/question/13708277

#SPJ4

You might be interested in
An electric motor rotating a workshop grinding wheel at 1.06 102 rev/min is switched off. Assume the wheel has a constant negati
kvasek [131]

Answer:

t = 106π / 30*2.1

Explanation:

w_{i} = 1.06*10^{2}    => 106

    => 106 x 2π/60

    => 106/30π

∝ = -2.1 rad/sec²

w_{f} => 0

w_{f} = w_{i} + ∝t

∴ (w_{f} - w_{i}) / ∝ = t

t = 106π / 30*2.1

6 0
3 years ago
As a projectile falls, what happens to the components of velocity?
netineya [11]

Answer:

Option (c).

Explanation:

An object when when projected at an angle, will have some horizontal velocity and vertical velocity such that,

v_x=v\cos\theta\ \text{and}\ v_y=v\sin\theta

\theta is the angle of projection

The horizontal component of the projectile remains the same because there is no horizontal motion. Vertical component changes at every point.

As a projectile falls, vertical velocity increases in magnitude, horizontal velocity stays the same .

7 0
3 years ago
PLEASE NEED AN ANSWER SO I CAN SUBMIT IT!!! THANK YOU IN ADVANCE (will give brainliest)
alexandr402 [8]

Answer:

Im only 12 and i need the points so ima try my best.

Explanation:

574.780616 m6 kg3 s-6 K-3 mol-3

6 0
3 years ago
When the activation energy of an exothermic reaction decreases at a given temperature, the reaction rate increases because the _
fgiga [73]
When the activation energy of an exothermic reaction decreases at a given temperature, the reaction rate increases because the <span>number of successful effective collisions is higher. More of the reactants collide and are able to form products. Hope this answers the question. have a nice day.</span>
6 0
3 years ago
Consider an ideal gas at 27.0 degrees Celsius and 1.00 atmosphere pressure. Imagine the molecules to be uniformly spaced, with e
My name is Ann [436]

To solve the exercise it is necessary to keep in mind the concepts about the ideal gas equation and the volume in the cube.

However, for this case the Boyle equation will not be used, but the one that corresponds to the Boltzmann equation for ideal gas, in this way it is understood that

PV =NkT

Where,

N = Number of molecules

k = Boltzmann constant

V = Volume

T = Temperature

P = Pressure

Our values are given as,

N = 1

k = 1.38*10^{-23}J/K

T = 27\°C = 27\°C + 273 = 300K

P = 1atm = 101325Pa

Rearrange the equation to find V we have,

V = \frac{NkT}{P}

V = \frac{1(1.38*10^{-23})(300K)}{101325Pa}

V = 4.0858*10^{-26}m^3

We know that length of a cube is given by

V = L^3

Therefore the Length would be given as,

L = V^{1/3}

L = (4.0858*10^{-26})^{1/3}

L = 3.445*10^{-9}m

Therefore each length of the cube is 3.44nm

7 0
3 years ago
Other questions:
  • For which job would a noise canceling device be the most beneficial?
    15·2 answers
  • What are the SI base units for length and mass?
    14·2 answers
  • An electron and a proton are held on an x axis, with the electron at x = + 1.000 m and the proton at x = - 1.000 m. How much wor
    12·1 answer
  • How does friction affect speed?
    9·1 answer
  • Question 1 Multiple Choice Worth 2 points)
    14·1 answer
  • Two billiard balls, each with a mass of 0.17 kg, collide with each other on a
    5·1 answer
  • 1. An object is moving to the right while a force directed to the left acts on the object. Is this force
    13·1 answer
  • What is TeO3 compound name​
    9·2 answers
  • The same strength force was exerted in the same direction on both Object A and Object B. Why did Object A go faster than Object
    15·1 answer
  • if mechanical advantage and velocity ratio of a machine are equal then the simple machine is called what​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!