Answer:
option 1 will be the answer.
Explanation:
hope it helps.
Answer:
The mass of the ice block is equal to 70.15 kg
Explanation:
The data for this exercise are as follows:
F=90 N
insignificant friction force
x=13 m
t=4.5 s
m=?
applying the equation of rectilinear motion we have:
x = xo + vot + at^2/2
where xo = initial distance =0
vo=initial velocity = 0
a is the acceleration
therefore the equation is:
x = at^2/2
Clearing a:
a=2x/t^2=(2x13)/(4.5^2)=1.283 m/s^2
we use Newton's second law to calculate the mass of the ice block:
F=ma
m=F/a = 90/1.283=70.15 kg
Answer:
1 ohm
Explanation:
since there are two identical resistors, one resistor will be
R =
=2ohm [ proven as in series
]
to calculate the equivalent resistance when in parallel:

so,


Answer:

Explanation:
From the question we are told that:
Mass 
Deviation 
Time 
Generally the equation for moment of inertia is mathematically given by



We don't even need to know how many pulses were produced
in those 3 seconds.
The beginning of the first pulse took 3 seconds to travel
45 centimeters from the generator.
Its speed is (45 cm) / (3 sec) = 15 cm/sec.