Answer:
Distance = 13.9 meters
Explanation:
Given the following data;
Maximum speed = 150 km/hr to meters per seconds = 150 * 1000/3600 = 41.67 m/s
Decelerating speed = 3m/s
To find the distance travelled with this speed;
Distance = maximum speed/decelerating speed
Distance = 41.67/3
Distance = 13.9 meters
Therefore, the bus would travel a distance of 13.9 meters before stopping.
So it could follow the correct mass for the atom
This problems a perfect application for this acceleration formula:
Distance = (1/2) (acceleration) (time)² .
During the speeding-up half: 1,600 meters = (1/2) (1.3 m/s²) T²
During the slowing-down half: 1,600 meters = (1/2) (1.3 m/s²) T²
Pick either half, and divide each side by 0.65 m/s²:
T² = (1600 m) / (0.65 m/s²)
T = square root of (1600 / 0.65) seconds
Time for the total trip between the stations is double that time.
T = 2 √(1600/0.65) = <em>99.2 seconds</em> (rounded)