Answer:
n = c/v = (3.00 x 108 m/s)/(2.76 x 108 m/s) = 1.09. This does not equal any of the indices of refraction listed in the table.
Given gravitational potential energy when he's lifted is 2058 J.
Kinetic energy is transferred to the person.
Amount of kinetic energy the person has is -2058 J
velocity of person = 7.67 m/s².
<h3>
Explanation:</h3>
Given:
Weight of person = 70 kg
Lifted height = 3 m
1. Gravitational potential energy of a lifted person is equal to the work done.

Gravitational potential energy is equal to 2058 Joules.
2. The Gravitational potential energy is converted into kinetic energy. Kinetic energy is being transferred to the person.
3. Kinetic energy gained = Potential energy lost = 
Kinetic energy gained by the person = (-2058 kg.m/s²)
4. Velocity = ?
Kinetic energy magnitude= 
Solving for v, we get

The person will be going at a speed of 7.67 m/s².
Answer:
6 km is the right answer
hope it helps you
Explanation:
please mark me as brainliest
Answer:
a) 0.1832 A
b) 11.91 Volts
c) 2.18 Watt , 0.0168 Watt
Explanation:
(a)
R = external resistor connected to the terminals of the battery = 65 Ω
E = Emf of the battery = 12.0 Volts
r = internal resistance of the battery = 0.5 Ω
i = current flowing in the circuit
Using ohm's law
E = i (R + r)
12 = i (65 + 0.5)
i = 0.1832 A
(b)
Terminal voltage is given as
= i R
= (0.1832) (65)
= 11.91 Volts
(c)
Power dissipated in the resister R is given as
= i²R
= (0.1832)²(65)
= 2.18 Watt
Power dissipated in the internal resistance is given as
= i²r
= (0.1832)²(0.5)
= 0.0168 Watt
Another name for these two words is "constant" and you want to have a "constant", because you want something to compare your experimental group to, to see whether data had changed or not. So you have placebos or a double- blind to compare your experimental group to it and also so you know you don't have a bias or anything in the study.