The formula for half-life is:

Where A is the amount of iodine-131 initially and after 40 days, t is time, h is half-life of the isotope. Let's plug in our values to the equation:

Therefore, the patient has 0.625 grams of iodine-131 after 40 days.
Answer:
<u>Power</u><u> </u><u>is</u><u> </u><u>7</u><u>7</u><u>3</u><u>.</u><u>8</u><u> </u><u>watts</u>
Explanation:

Answer:
θ’ = θ₀ / 2
we see that the resolution angle is reduced by half
Explanation:
The resolving power of a radar is given by diffraction, for which we will use the Rayleigh criterion for the resolution of two point sources, they are considered resolved if the maximum of diffraction of one coincides with the first minimum of the other.
The first minimum occurs for m = 1, so the diffraction equation of a slit remains
a sin θ = λ
in general, the diffraction patterns occur at very small angles, so
sin θ = θ
θ = λ / a
in the case of radar we have a circular aperture and the equation must be solved in polar coordinates, which introduces a numerical constant.
θ = 1.22 λ /a
In this exercise we are told that the opening changes
a’ = 2 a
we substitute
θ ‘= 1.22 λ / 2a
θ' = (1.22 λ / a) 1/2
θ’ = θ₀ / 2
we see that the resolution angle is reduced by half
Your answer is going to be 2m south
When you touch<span> a doorknob (or something else made of metal), which has a positive charge with few electrons.</span>