Answer:
45.89m/s²
Explanation:
Given
Distance S = 305m
Time t = 3.64s
To get the acceleration during this run, we will apply the equation of motion:
S = ut+1/2at²
Substitute the given parameters into the formula and calculate the value of a
305 = 0+1/2 a(3.64)²
304 = 1/2(13.2496)a
304 = 6.6248a
a = 304/6.6248
a = 45.89m/s²
Hence the average acceleration during this run is 45.89m/s²
At the top of the mountain, when he tightens the cap onto the bottole, there is some water and some air inside the bottle. Then he brings the bottle down to the base of the mountain.
The pressure on the outside of the bottle is greater than it was when he put the cap on. If anything could get out of the bottlde, it would. But it can't . . . the cap is on too tight. So all the water and all the air has to stay inside, and anything that can get squished into a smaller space has to get squished into a smaller space.
The water is pretty much unsquishable.
Biut the air in there can be <em>COMPRESSED</em>. The air gets squished into a smaller space, and the bottle wrinkles in slightly.
Answer:
the vertical acceleration of the case is 1.46 m/s
Explanation:
Given;
mass of the clarinet case, m = 3.07 kg
upward force applied by the man, F = 25.60 N
Apply Newton's second law of motion;
the upward force on the clarinet case = its weight acting downwards + downward force due to its downward accelaration
F = mg + m(-a)
the acceleration is negative due to downward motion from the top of the piano.
F = mg - ma
ma = mg - F

Therefore, the vertical acceleration of the case is 1.46 m/s²
It is -59 i think or just ask someone esle for help