Answer:
B
Explanation:
Given:-
- The charge of the test particle q = 3.0 * 10^-9 C
- The force exerted by the metal sphere F = 6.0 * 10^-5 N
Find:-
The magnitude and direction of the electric field
strength at this location?
Solution:-
- The relationship between the electrostatic force F exerted by the metal sphere on the test-charge and the Electric Field strength E at the position of test charge is given by:
F = E*q
- Using the data given we can determine E:
E = F / q
E = (6.0 * 10^-5) / (3.0 * 10^-9)
E = 20,000 N/C
- The direction of electric field is given by the net charge of the source ( metal sphere). The metal sphere is negative charge hence the direction of Electric Field strength E is directed towards the metal sphere.
If the atmosphere were 50% more dense, sunlight would be much redder then it is now. As the atmosphere increase in density, more and more of the blue light would be scattered away in all directions, making the light that reaches the ground very red. Think of the color of a deep red sunset, but this would be the color even at noon.
Hope this helps!
The best and most correct answer among the choices provided by your question is the third choice or letter C.
Lithium is the <span>element that can combine with chlorine to make the best conductor of electricity when in the liquid form because </span><span>it has a much lower electronegativity value.</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
Answer:
As Per Given Information
20x objective lens was used by specimen
10x ocular lens was also used by him.
we have to find the total magnification.
For calculating the total magnification we 'll simply do multiplication
Total Magnification = 20x × 10x
Total Magnification = 200x
So , the total magnification will be 200x .
Answer:

Explanation:
From the question we are told that:
Frictional force 
Coefficient of kinetic friction 
Generally the equation for Normal for is mathematically given by

Therefore

