Answer:
r= 98.3 mm
Explanation:
For rim
R= 0.209 m
M= 4.32 kg
For rods
m= 7.37 kg
L= 2 R= 2 x 0.209 = 0.418 m
The Total moment of inertia of the wagon
I=MR²+2 x 1/12 m L²
Now by putting the values

I=0.413 kg.m²
For disk:
t= 0.0462 m
Density ρ = 5990 kg/m³
Lets take r is the radius of disk
So the mass of the disc
m'=ρ πr² t
The moment of inertia of disc
I'=1/2 m'r²
I'=1/2 x r² x ρ πr² t
Given that
I = I'
1/2 x r² x ρ πr² t = 0.413 kg.m²
1/2 x r³ x ρ π t = 0.413
r³ x ρ π t = 0.826

r³=0.00095
r=0.0983 m
r= 98.3 mm
Answer:
Inertia = angular momentum / angular velocity
1. Frequency: 
The frequency of a light wave is given by:

where
is the speed of light
is the wavelength of the wave
In this problem, we have light with wavelength

Substituting into the equation, we find the frequency:

2. Period: 
The period of a wave is equal to the reciprocal of the frequency:

The frequency of this light wave is
(found in the previous exercise), so the period is:

Speed = (acceleration) x (time)
Velocity = (speed) in (direction of the speed)
Speed = (-3 m/s²) x (5 s) = 15 m/s
Velocity =
(15 m/s) in the direction opposite to the direction you call positive.
Displacement = (distance between start-point and end-point)
in the direction from start-point to end-point.
Distance = (1/2) (acceleration) (time)²
Distance = (1/2) (3 m/s²) (5 s)²
= (1/2) (3 m/s²) (25 s²) = 37.5 meters
Displacement =
37.5 meters in the direction opposite to the direction you call positive.
Answer:
3. 5.0N/kg
Explanation:
Gravitational field strength = gravitational force/mass of astronaut = 350N/70kg = 5.0N/kg