Answer:
For Total energy and momentum to be conserved, the minimum energy of the photons released is equal to twice the rest mass energy of an electron that is 
The annihilation of electron -positron cannot produce a single photon. It is prohibited by the law of conservation of energy and momentum.
The wavelength of the interfering waves is 3.14 m.
<h3>Calculation:</h3>
The general equation of a standing wave is given by:
y = 2A sin (kx) cos (ωt) ......(1)
The given equation represents the standing wave produced by the interference of two harmonic waves:
y = 3 sin (2x) cos 5t .......(2)
Comparing equations (1) and (2):
k = 2
We know that,
k = 2π/λ
λ = 2π/k
λ = 2 (3.14)/ 2
λ = 3.14 m
Therefore, the wavelength of the interfering waves is 3.14 m.
I understand the question you are looking for is this:
Two harmonic waves traveling in opposite directions interfere to produce a standing wave described by y = 3 sin (2x) cos 5t where x is in m and t is in s. What is the wavelength of the interfering waves?
Learn more about interfering waves here:
brainly.com/question/2910205
#SPJ4
<span>320. seconds
The ideal gas law is
PV = nRT
where
P = pressure of the gas
V = volume of the gas
n = number of moles of the gas
R = the ideal gas constant
T = absolute temperature of the gas.
Since we're going to want the volume, solve for V
PV = nRT
V = nRT/P
755 mmHg converts to 100658.11 Pascals
25 C = 298.15 K
Let's calculate nT/P, then we'll multiply by R
1 mol * 298.15 K / 100658.11 Pa = 0.002962007 K mol/Pa
The value for R in the most convenient units is 8.3144598 m^3 Pa/(K mol), so
0.002962007 K mol/Pa * 8.3144598 m^3 Pa/(K mol) = 0.024627486 m^3
So 1 mole of air at the specified temperature and pressure has a volume of 24.627 liters. The rest of the problem is now trivial. Just divide by the rate of consumption, so
24.627 l / 0.0770 l/s = 319.8374798 s
Rounding the result to 3 significant figures gives 320. seconds.</span>
Answer:
Explanation:Genetic variation can be caused by mutation (which can create entirely new alleles in a population), random mating, random fertilization, and recombination between homologous chromosomes during meiosis (which reshuffles alleles within an organism's offspring).
Answer:
<em>b. At twice the distance, the electric potential is V/2</em>
Explanation:
Electric potential
Is the amount of work needed to move a unit charge from a reference point (usually a point at infinity) without producing acceleration.
The electric potential due to a point charge q at a distance r is given by

Where K is the Coulomb's constant. If we know the electric potential at a certain distance is V, if the distance is changed to 2r, then the new potential is

It means that the electric potential is half the previous value. Correct option: b.