1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
meriva
3 years ago
11

The electric potential at a certain distance from a point charge can be represented by V. What is the value of the electric pote

ntial at twice the distance from the point charge?
a. At twice the distance, the electric potential is 4V.b. At twice the distance, the electric potential is V/2.c. At twice the distance, the electric potential is V/4.d. At twice the distance, the electric potential is 2V.e. At twice the distance, the electric potential remains V.
Physics
1 answer:
Maksim231197 [3]3 years ago
8 0

Answer:

<em>b. At twice the distance, the electric potential is V/2</em>

Explanation:

Electric potential

Is the amount of work needed to move a unit charge from a reference point (usually a point at infinity) without producing acceleration.

The electric potential due to a point charge q at a distance r is given by

\displaystyle V=K\frac{q}{r}

Where K is the Coulomb's constant. If we know the electric potential at a certain distance is V, if the distance is changed to 2r, then the new potential is

\displaystyle V'=K\frac{q}{2r}=\frac{1}{2}K\frac{q}{r}=\frac{1}{2}V

It means that the electric potential is half the previous value. Correct option: b.

You might be interested in
The great limestones caverns were formed by dripping water. If water droplets of 10 ml fall from a height of 5 m at a rate of 10
loris [4]

The average force of the water droplets is the force given by the impact

per second of the droplets on the limestone floor.

  • The average force exerted on the limestone floor is approximately <u>1.6013 × 10⁻² N</u>

Reasons:

The given parameters are;

Volume of a droplet = 10 ml = 1 × 10⁻⁵ m³

Height from which the water falls, <em>h </em>= 5 meters

Rate at which the water falls = 10 per minute

Required:

The average force exerted on the floor by the water droplets.

Solution:

According to Newton's Second Law of motion, we have;

Force = Rate of change of momentum

Momentum = Mass × Velocity

Mass of a droplet of water = Volume × Density

Density of water = 997 kg/m³

Mass of a droplet = 1 × 10⁻⁵ m³ × 997 kg/m³ = 0.00997 kg

The velocity just before the droplet reaches the ground, v = √(2·g·h)

Where;

g = Acceleration due to gravity ≈ 9.81 m/s²

Which gives;

v = √(2 × 9.81 m/s² × 5 m) ≈ 9.905 m/s

The rate of change in momentum per minute = 1

Therefore;

\displaystyle The \ rate \ of \ change \ in \ momentum = Average \ force = \mathbf{\frac{\Delta Momentum }{\Delta Time}}

ΔMomentum = Mass × ΔVelocity

Considering the 10 drops per minute, we have;

ΔMomentum = 10 × 0.0097 kg × 9.905 m/s = 0.960785 kg·m/s

ΔTime = 1 minute = 60 seconds

Therefore;

\displaystyle Average \ force, \, F_{ave}  \frac{0.960785 \, kg\cdot m/s }{60 \, s} \approx =\mathbf{1.6013 \times 10^{-2} \, N}

  • The average force exerted on the limestone floor by the droplets of water is F_{ave} ≈ <u>1.6013 × 10⁻² N</u>

Learn more about Newton's Second Law of motion and force exerted water here:

brainly.com/question/3999427

brainly.com/question/4197598

3 0
2 years ago
A. A land speed car can decelerate at 9.8m/s. How long does it take the car to come to a complete stop from a run of 885 km/hr (
Nimfa-mama [501]

Answer:

A. 25.08 s

B. 3082.53 m

C. 3×10⁵ m/s²

Explanation:

A. Determination of the time.

This can be obtained as illustrated below:

Acceleration (a) = –9.8 m/s²

Initial velocity (u) = 245.8 m/s

Final velocity (v) = 0 m/s

Time (t) =.?

v = u + at

0 = 245.8 + (–9.8 × t)

0 = 245.8 – 9.8t

Collect like terms

0 – 245.8 = – 9.8t

– 245.8 = – 9.8t

Divide both side by –9.8

t = –245.8 / –9.8

t = 25.08 s

Therefore, it will take 25.08 s for the car to come to a complete stop.

B. Determination of the distance travelled by the car.

Acceleration (a) = –9.8 m/s²

Initial velocity (u) = 245.8 m/s

Final velocity (v) = 0 m/s

Distance (s) =?

v² = u² + 2as

0² = 245.8² + (2 × –9.8 × s)

0 = 60417.64 – 19.6s

Collect like terms

0 – 60417.64 = – 19.6s

– 60417.64 = – 19.6s

Divide both side by –19.6

s = –60417.64 / –19.6

s = 3082.53 m

Thus, the car travelled a distance of 3082.53 m before stopping completely.

C. Determination of the acceleration of the object.

Initial velocity (u) = 0 m/s

Final velocity (v) = 600 m/s

Distance (s) = 0.6 m

Acceleration (a) =?

v² = u² + 2as

600² = 0² + (2 × a × 0.6)

360000 = 0 + 1.2a

360000 = 1.2a

Divide both side by 1.2

a = 360000 / 1.2

a = 300000 = 3×10⁵ m/s²

7 0
3 years ago
A man pushes on a trunk with a force of 250 newtons. The trunk does not move. How much positive work is done on the trunk?
Digiron [165]

Answer:

F is 250 N

d is 0 m

F x d

=250 x 0

=0

The answer is 0.0 J.

3 0
4 years ago
A proton traveling at 17.6° with respect to the direction of a magnetic field of strength 3.28 mT experiences a magnetic force o
umka2103 [35]

Answer:

a) The proton's speed is 5.75x10⁵ m/s.

b) The kinetic energy of the proton is 1723 eV.  

Explanation:

a) The proton's speed can be calculated with the Lorentz force equation:

F = qv \times B = qvBsin(\theta)     (1)          

Where:

F: is the force = 9.14x10⁻¹⁷ N

q: is the charge of the particle (proton) = 1.602x10⁻¹⁹ C

v: is the proton's speed =?

B: is the magnetic field = 3.28 mT

θ: is the angle between the proton's speed and the magnetic field = 17.6°

By solving equation (1) for v we have:

v = \frac{F}{qBsin(\theta)} = \frac{9.14 \cdot 10^{-17} N}{1.602\cdot 10^{-19} C*3.28 \cdot 10^{-3} T*sin(17.6)} = 5.75 \cdot 10^{5} m/s

Hence, the proton's speed is 5.75x10⁵ m/s.

b) Its kinetic energy (K) is given by:

K = \frac{1}{2}mv^{2}

Where:

m: is the mass of the proton = 1.67x10⁻²⁷ kg

K = \frac{1}{2}mv^{2} = \frac{1}{2}1.67 \cdot 10^{-27} kg*(5.75 \cdot 10^{5} m/s)^{2} = 2.76 \cdot 10^{-16} J*\frac{1 eV}{1.602 \cdot 10^{-19} J} = 1723 eV  

Therefore, the kinetic energy of the proton is 1723 eV.

I hope it helps you!        

3 0
3 years ago
A student is trying to determine the acceleration of a feather as she drops it to the ground. if the student is looking to achie
Anna [14]

The coordinate system should have the origin at the point where the feather is dropped and the downward direction is to be taken as positive.

All falling bodies experience acceleration towards the center of the Earth due to the force of gravitational attraction exerted on the object by the Earth. A feather, when dropped experiences an acceleration in the downward direction. Since the acceleration of the feather is in the downward direction, a feather, when dropped with zero initial velocity, has its velocity vector directed in the direction of its acceleration.

If the downward direction is taken as positive, the falling feather can be said to have a positive velocity and a positive acceleration.

5 0
3 years ago
Other questions:
  • A hockey puck on a frozen pond is given an initial speed of 20.0 m/s. If the puck always remains on the ice and slides 115 m bef
    10·1 answer
  • How do atoms become ions explain which characteristics change in which stay the same during this transformation
    13·1 answer
  • What measurement can be used to determine the stability of the atmosphere?
    7·1 answer
  • Which of the following objects conducts heat the best?
    10·1 answer
  • What is a crystalline solid?​
    7·1 answer
  • Soils refers to natural material from the earth, but not artificial material (like AstroTurf or asphalt). True False
    9·2 answers
  • Height of a artificial satelite​
    12·1 answer
  • What is the prefix notation of 0.0000738?​
    11·2 answers
  • Which equation will tell you the acceleration of the object?
    10·1 answer
  • A 20 ohm lamp and a 5 ohm lamp are connected in series and placed across a potential difference of 50 V.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!