A non-moving bike has wheels that aren't spinning and zero angular momentum, which makes it very easy for external torque to change the wheels' direction, making the bike harder to balance. Even when staying relatively motionless, though, a rider can balance a bike with some effort.
Answer:
Explanation:
Change in length of spring = 2.13 m
Component of weight acting on spring = mg sinθ
so
mg sinθ = k x where k is spring constant and x is total stretch due to force on the spring.
Here x = 2.13
mg sin17 = k x 2.13
31 x 9.8 sin17 = k x 2.13
k = 41.7 N/m
b ) In case surface had friction , spring would have stretched by less distance .
It is so because , the work done by gravity in stretching down is stored as potential energy in spring . In case of dissipative force like friction , it also takes up some energy in the form of heat etc so spring stretches less.
here since string is attached with a mass of 2 kg
so here tension force in the rope is given as

here we will have

now we will have speed of wave given as

here we will have


now we know that frequency is given as
F = 100 Hz
now wavelength is given as


so wavelength will be 0.16 m