Answer:
The angular speed of the Crab nebula pulsar is 190.3 rad/s.
Explanation:
Given that,
Time T= 33 ms = 0.033 s
The angular speed is equal to the 2π divided by time period.
We need to calculate the angular speed of the Crab nebula pulsar
Using formula of angular speed

Where, T = time
= angular speed
Put the value into the formula


Hence, The angular speed of the Crab nebula pulsar is 190.3 rad/s.
225 mins long will a bus take to travel 150 km at an average speed of 40 km h
Since the average speed is 40km/h it means
40 km can be travelled by it in 1 hour
1 km can be travelled by it in 1/40 hour
So 150km can be travelled by it in 150/40 hours or 225 mins.
By formula time=distance/speed=150/40=3.75hours
Speed = Distance/Time – This tells us how slow or fast an object moves. It describes the distance travelled divided by the time taken to cover the distance. Time = Distance / Speed, as the speed increases the time taken will decrease and vice versa.
To know more about average speed click here
brainly.com/question/4931057
#SPJ4
Use the conservation of angular momentum; angular momentum at the beginning = angular momentum at the end
Conservation of angular momentum:
I1 w1 = I2 w2
Where I is the moment of inertia. For a sphere, I=2/5 m R^2. Substituting into the equation above we get
w2 = I1 w1 / I2 = w1 m1 R1^2 / (m2 R2^2)
w2 = w1 4 * (R1/R2)^2
= 4*(1)*(7E5/7.5)^2
= 3.48E10 revs/(17days)
= 2.04705882 x 10^9 revs/sec
Answer:
Final velocity of NFL line backer is 16.67 m/s.
Explanation:
From the question, we have following data about the NFL line backer:
Initial Speed of line backer = Vi = 0 m/s (Since, he starts from rest)
Distance covered by NFL line backer = s = 100 m
Time taken by the NFL line backer to complete 100 m sprint = t = 12 s
Acceleration of NFL line backer during sprint = a
Final Velocity of NFL line backer = Vf = ?
First we need to find the acceleration of the NFL line backer. For that purpose we will use 2nd equation of motion:
s = (Vi)(t) + (0.5)at²
using values:
100 m = (0 m/s)(12 s) + (0.5)(a)(12 s)²
100 m/72 s² = a
a = 1.39 m/s²
Now, we use 1st equation of motion to find Vf:
Vf = Vi + at
Vf = 0 m/s + (1.39 m/s²)(12 s)
<u>Vf = 16.67 m/s</u>