Answer:
You drop a rock from rest out of a window on the top floor of a building, 30.0 m above the ground. When the rock has fallen 3.00 m, your friend throws a second rock straight down from the same window. You notice that both rocks reach the ground at the exact same time. What was the initial velocity of the ...... rest out of a window on the top floor of a building, 30.0m above the ground. ... You Notice That Both Rocks Reach The Ground At The Exact Same Time. ... You drop a rock from rest out of a window on the top floor of a building, 30.0m ... When the rock has fallen 3.20 m, your friend throws a second rock straight down from ...
Answer:
Toward the centre of the circular path
Explanation:
The can is moved in a circular path: this means that it is moving by circular motion (uniform circular motion if its tangential speed is constant).
In order to keep a circular motion, an object must have a force that pushes it towards the centre of the circular trajectory: this force is called centripetal force, and its magnitude is given by

where m is the mass of the object, v its tangential speed, r the radius of the trajectory. This force always points towards the centre of the circular path.
That is False they are actually located in your stomach area