Answer:
<u>Amplitude - remains the same</u>
<u>Frequency - increases</u>
<u>Period - decreases</u>
<u>Velocity - remains the same.</u>
<u />
Explanation:
The amplitude of the wave remains the same since you are not changing the distance your hand moves and the amplitude of the wave depends on how much distance your hand covers while moving.
The frequency of your wave increases since now you are moving your hand more number of times in the same period i.e. your hand is moving faster in one second. So, the frequency of your wave increases.
The period is the time taken by the wave to travel a certain distance. Since your hand is now moving faster, the wave will travel faster and will take less time to cover the same distance hence, we can say that its period will decrease.
The velocity of a wave depends on the medium in which it is travelling. Your wave was previously travelling in air and the new wave is also travelling in the same medium so the velocity of the wave remains unchanged.
Answer:
KE = 2.535 x 10⁷ Joules
Explanation:
given,
angular speed of the fly wheel = 940 rad/s
mass of the cylinder = 630 Kg
radius = 1.35 m
KE of flywheel = ?
moment of inertia of the cylinder

=
= 574 kg m²
kinetic energy of the fly wheel

KE = 2.535 x 10⁷ Joules
the kinetic energy of the flywheel is equal to KE = 2.535 x 10⁷ Joules
The question here would be what is the volume of the room. The density of air that is given has no use. We simply multiply the dimensions given of the room to determine the volume.
<span>43.0m × 18.0m × 15.0m = 11610m^3 ( 3.28 ft / 1 m)^3 = 4.09 x 10^5 ft^3</span>
A gentle slope requires less force over a longer distance as compared to steep slope.
Explanation:
Mechanical advantage of a slope is equal to the ratio of length of slope and the height. A steep slope has shorter length as compared to a gentle slope for the same height. Therefore, mechanical advantage of a gentle slope is more than that of a steep slope. Hence, a gentle slope requires less force over a long distance than a steep slope.