Answer:
Answer:
Debt payments to income ratio = 22.74%
Explanation:
Debts payment to Income ratio is calculated as follows:
= \frac{Total\ debt\ payment}{Total\ Income}
Total Income
Total debt payment
We have total debts payment = auto loan payment 685 + student loan payment685+studentloanpayment375 + credit card payment 125 =125=1,185
Total Income = $5,210
Note: Credit card is also a kind of debt as firstly all the expenses are met during the period and then the payment is made at the end of the period, therefore, there is a loan in the period. Therefore, it will be considered for payment of debt.
Debt payments to income ratio = \frac{1,185}{5,210} = 22.74
5,210
1,185
=22.74
That means the debts are 22.74% of income.
Answer:
0.5 kg
Explanation:
The momentum of an object is defined as
p = mv
where
m is the mass
v is the velocity
In this problem we have,
v = 15 m/s is the velocity of the stone
p = 7.5 kg m/s is the momentum
Solving for m, we can find the mass of the stone:

Answer:
It is a measure of the electric force per unit charge on a test charge.
Explanation:
The magnitude of the electric field is defined as the force per charge on the test charge.
Since we define electric field as the force per charge, it will have the units of force divided by the unit of charge. This implies that the SI unit of electric field is given as Newton/Coulomb (N/C).
Gap junctions in the intercalated discs allow impulses to be spread across the heart more quickly. This is because gap junctions allow particles/signals to pass through, thus making cells with gap junctions more able to interact.
One more thing—you posted this in the physics section rather than biology.
Answer:
(a) ΔU=747J
(b) γ=1.3
Explanation:
For (a) change in internal energy
According to first law of thermodynamics the change in internal energy is given as
ΔU=Q-W
Substitute the given values
ΔU=970J-223J
ΔU=747J
For(b) γ for the gas.
We can calculate γ by ratio of heat capacities of the gas
γ=Cp/Cv
Where Cp is the molar heat capacity at constant pressure
Cv is the molar heat capacity at constant volume
To calculate γ we first need to find Cp and Cv
So
For Cp
As we know
Q=nCpΔT
Cp=(Q/nΔT)

From relation of Cv and Cp we know that
Cp=Cv+R
Where R is gas constant equals to 8.314J/mol.K
So

So
γ=Cp/Cv
γ=[(37J/mol.K) / (28.687J/mol.K)]
γ=1.3