Answer:
Linear and rotational Kinetic Energy + Gravitational potential energy
Explanation:
The ball rolls off a tall roof and starts falling.
Let us first consider the potential energy or more specifically gravitational potential energy (
;
= mass of the ball,
= acceleration due to gravity,
= height of the roof). This energy comes because someone or something had to do work to take the ball to the top of the roof against the force of gravity. The potential energy is naturally maximum at the top and minimum when the ball finally reaches the ground.
Now, the ball starts to roll and falls off the roof. It shall continue rotating because of inertia (Newton's first law). This contributes to the rotational kinetic energy (
;
=moment of inertia of the ball &
= angular velocity).
Finally comes the linear kinetic energy or simply, kinetic energy (
) which is caused due to the velocity
of the ball.
Answer:
(a) dime
Explanation:
Convert all to metric unit:
0.5 cm = 0.005 m
1.8 cm = 0.018 m
71 cm = 0.71 m
In order to find out we would need to calculate the ratio R between the object diameter d and their distance s to our eyes:



Since the ratio of the dime is larger than the ratio of the moon, and the ratio of the pea is smaller than the ratio of the moon, only the (a) dime can cover your view of the moon.
The answer is above but I don't know if it's correct.
Answer:
the answer would be microwelds.