Answer:
The Internal energy of the gas did not change
Explanation:
In this situation the Internal energy of the gas did not change and this is because according the the first law of thermodynamics
Δ U = Q - W ------ ( 1 )
Δ U = change in internal energy
Q = heat added
W = work done
since Q = W. the value of ΔU will be = zero i.e. No change
Answer:
The current is halved
Explanation:
The relationship between the current and the resistance is given by Ohm's Law, as follows:

where,
V = Voltage
I = Current
R = Resistance
Therefore, if we double the resistance:

Hence the correct option is:
<u>The current is halved</u>
Answer:
Sorry don't know the answer
Answer:
Work done by the frictional force is 
Explanation:
It is given that,
Mass of the car, m = 1000 kg
Initial velocity of car, u = 26.1 m/s
Finally, it comes to rest, v = 0
We have to find the work done by the frictional forces. Work done is equal to the change in kinetic energy as per work - energy theorem i.e.



W = −340605 J
or

Hence, the correct option is (a).