Answer:
n=6.56×10¹⁵Hz
Explanation:
Given Data
Mass=9.1×10⁻³¹ kg
Radius distance=5.3×10⁻¹¹m
Electric Force=8.2×10⁻⁸N
To find
Revolutions per second
Solution
Let F be the force of attraction
let n be the number of revolutions per sec made by the electron around the nucleus then the centripetal force is given by
F=mω²r......................where ω=2π n
F=m4π²n²r...............eq(i)
as the values given where
Mass=9.1×10⁻³¹ kg
Radius distance=5.3×10⁻¹¹m
Electric Force=8.2×10⁻⁸N
we have to find n from eq(i)
n²=F/(m4π²r)

Here molecules of gas remains constant. If more pressure is applied to the piston, gaseous molecules will come closer to each other. Hence their volume decreases and density increases. Hope this helps you.
<span>If you are looking for a substance that will easily dissolve in water, you should look for a substance with which properties? it is b. high solubility
</span>
Answer:
field B = µ₀c I / 2πr
The field in the xy plane due to the fact that the two wires are perpendicular to the plane Bx and By are everywhere 0 on the plane.
a) Midway between, the Bz components cancel, so <0, 0, 0> T
b) Bz = µ₀ x I / 2πa + µ₀ x I / 2π(3a) = (µ₀ x I / 2π)(1/a + 1/3a)
Bz = (µ₀ x I / 2πr)(3/3a + 1/3a) = (µ₀x I / 2πr)(4 / 3a) = 2µ₀ x I / 3πa
c) By symmetry, Bz = -2µ₀ x I / 3πa (that is, down into the plane)
Answer:
The frequencies of sounds made by these two types of instruments are different because of the different ways that air will move at a closed or open end of the pipe. Open pipes do not produce superior tone than closed (or stopped) pipes, therefore different types of pipes are used to produce different tonal qualities.
Explanation: