Answer:
v =
the speed in the two planes will be the same since it does not depend on the angle of the same
Explanation:
In this exercise we are told that the two inclined planes have no friction force, so we can apply the conservation of energy for each one, we will assume that the initial height in the two planes is the same
starting point. Highest part of each plane
Em₀ = U = m g h
final point. Lowest part of each plane
= K = ½ m v²
as there is no friction, the mechanical energy is preserved
Em₀ = Em_{f}
mg h = ½ m v²
v =
As we can see, the speed in the two planes will be the same since it does not depend on the angle of the same
Fetal because you are still in the womb and not fully developed
Answer:
B. less
Explanation:
acceleration due to gravity on Earth, g = 9.8 m/s²
acceleration due to gravity on Moon, g = 1.6 m/s²
Given mass of the object as, m = 5 kg
Weight of an object is given as, W = mg
Weight of the object on Earth, W = 5 x 9.8 = 49 N
Weight of the object on Moon, W = 5 x 1.6 = 8 N
Therefore, the object weighs less on the moon compared to its weight on Earth.
The correct option is "B. less"
The problem was too big to type in my phone.
I hope my answer is readable.
P.S After the collision P is also moving in the same direction as Q.
Answer:
6 V
Explanation:
We can solve the problem by using Ohm's law:

where
V is the voltage in the circuit
R is the resistance
I is the current
In this problem, we know the current,
, and the resistance,
, therefore we can find the voltage in the circuit:
