Answer:
R = 710.7N
L = 67.689 N
During gravity fall L = R = 0 N
Explanation:
So the acceleration that the elevator is acting on the woman (and the package) in order to result in a net acceleration of 0.15g is
g + 0.15g = 1.15g
The force R that the elevator exerts on her feet would be product of acceleration and total mass (Newton's 2nd law):
a(m + M) = 1.15g(57 + 6) = 1.15*9.81*63 = 710.7N
The force L that she exerts on the package would be:
am = 1.15g *6 = 1.15*9.81*6 = 67.689N
When the system is falling, all have a net acceleration of g. So the acceleration that the elevator exerts on the woman (and the package) is 0, and so are the forces L and R.
The amount of charge that passes per unit time is called <em>electric current</em> .
Current has dimensions of [Charge] / [Time] .
It's measured and described in units of ' Ampere ' .
1 Ampere means 1 Coulomb of charge passing a point every second.
So this is easy to calculate when you split the velocity into x and y components. The x component is going to equal cos(53) * 290 and the y component is going to equal sin(53)*290.
The x location therefore is 290*cos(53)*35 = 6108.4m
The y location needs to factor in the downwards acceleration of gravity too, which is 9.81m/s^2. We need the equation dist. = V initial*time + 0.5*acceleration*time^2.
This gives us d=290*sin(53)*35 + (0.5*-9.81*35^2)=2097.5m
So your (x,y) coordinates equals (6108.4, 2097.5)
Answer:
The value of resistance of each resistor, R is 2.25 Ω
Explanation:
Given;
voltage across the three resistor, V = 1.5 V
power dissipated by the resistors, P = 3.00 W
the resistance of each resistor, = R
The effective resistance of the three resistors is given by;
R(effective) = R/3
Apply ohms law to determine the current delivered by the source;
V = IR
I = V/R
I = 3V/R
Also, power is calculated as;
P = IV
P = (3V/R) x V
P = 3V²/R
R = 3V² / P
R = (3 x 1.5²) / 3
R = 2.25 Ω
Therefore, the value of resistance of each resistor, R is 2.25 Ω