Answer:
High specific heat -> takes more energy to raise/lower object's temperature
Low specific heat -> takes less energy to raise/lower object's temperature
Explanation:
The specific heat capacity is the amount of heat required to raise the temperature of something per unit of mass.
A high specific heat value for an object means it takes more energy to raise or lower that object's temperature. A low specific heat value for an object means it does not take very much energy to heat or cool that object.
Answer:
6.41 s
Explanation:
Under constant acceleration we know that
average velocity × time taken = displacement


t = 6.41 s
The proof of used equation is given in the attachment.
Answer:
q_poly = 14.55 KJ/kg
Explanation:
Given:
Initial State:
P_i = 550 KPa
T_i = 400 K
Final State:
T_f = 350 K
Constants:
R = 0.189 KJ/kgK
k = 1.289 = c_p / c_v
n = 1.2 (poly-tropic index)
Find:
Determine the heat transfer per kg in the process.
Solution:
-The heat transfer per kg of poly-tropic process is given by the expression:
q_poly = w_poly*(k - n)/(k-1)
- Evaluate w_poly:
w_poly = R*(T_f - T_i)/(1-n)
w_poly = 0.189*(350 - 400)/(1-1.2)
w_poly = 47.25 KJ/kg
-Hence,
q_poly = 47.25*(1.289 - 1.2)/(1.289-1)
q_poly = 14.55 KJ/kg
Answer:
Distance = 25000000 miles
Time = 50 hours
Explanation:
Venus is the closest planet to Earth. It is about 25 million miles away from Earth. Its precise distance depends on where both Venus and Earth are in their respective orbits
Given that
Speed V = 500000 mph
Distance d = 25 000,000 miles
Speed = distance/ time
Time = distance/speed
Time = 25000000/500000
Time = 50 hours
It will therefore take 50 hours to get to venus at that speed.