1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natali5045456 [20]
3 years ago
6

Define mechanical energy in your own words. Give an example of the last time you used mechanical energy.

Physics
1 answer:
djyliett [7]3 years ago
7 0

Answer:

The sum of the potential energy and kinetic energy of a body or system        An example of mechanical energy is the power of a football flying through the air.

Explanation:

I took a test.

You might be interested in
One kg of air is contained in a piston-cylinder system and it undergoes a Carnot cycle having an efficiency of 60%.The heat tran
wlad13 [49]

Answer is in the file below

tinyurl.com/wtjfavyw

4 0
3 years ago
At the moment t = 0, a 20.0 V battery is connected to a 5.00 mH coil and a 6.00 Ω resistor. (a) Immediately thereafter, how does
insens350 [35]

(a) On the coil: 20 V, on the resistor: 0 V

The sum of the potential difference across the coil and the potential difference across the resistor is equal to the voltage provided by the battery, V = 20 V:

V = V_R + V_L

The potential difference across the inductance is given by

V_L(t) = V e^{-\frac{t}{\tau}} (1)

where

\tau = \frac{L}{R}=\frac{0.005 H}{6.00 \Omega}=8.33\cdot 10^{-4} s is the time constant of the circuit

At time t=0,

V_L(0) = V e^0 = V = 20 V

So, all the potential difference is across the coil, therefore the potential difference across the resistor will be zero:

V_R = V-V_L = 20 V-20 V=0

(b) On the coil: 0 V, on the resistor: 20 V

Here we are analyzing the situation several seconds later, which means that we are analyzing the situation for

t >> \tau

Since \tau is at the order of less than milliseconds.

Using eq.(1), we see that for t >> \tau, the exponential becomes zero, and therefore the potential difference across the coil is zero:

V_L = 0

Therefore, the potential difference across the resistor will be

V_R = V-V_L = 20 V- 0 = 20 V

(c) Yes

The two voltages will be equal when:

V_L = V_R (2)

Reminding also that the sum of the two voltages must be equal to the voltage of the battery:

V=V_L +V_R

And rewriting this equation,

V_R = V-V_L

Substituting into (2) we find

V_L = V-V_L\\2V_L = V\\V_L=\frac{V}{2}=10 V

So, the two voltages will be equal when they are both equal to 10 V.

(d) at t=5.77\cdot 10^{-4}s

We said that the two voltages will be equal when

V_L=\frac{V}{2}

Using eq.(1), and this last equation, this means

V e^{-\frac{t}{\tau}} = \frac{V}{2}

And solving the equation for t, we find the time t at which the two voltages are equal:

e^{-\frac{t}{\tau}}=\frac{1}{2}\\-\frac{t}{\tau}=ln(1/2)\\t=-\tau ln(0.5)=-(8.33\cdot 10^{-4} s)ln(0.5)=5.77\cdot 10^{-4}s

(e-a) -19.2 V on the coil, 19.2 V on the resistor

Here we have that the current in the circuit is

I_0 = 3.20 A

The problem says this current is stable: this means that we are in a situation in which t>>\tau, so the coil has no longer influence on the circuit, which is operating as it is a normal circuit with only one resistor. Therefore, we can find the potential difference across the resistor using Ohm's law

V=I_0 R = (3.20 A)(6.0 \Omega)=19.2 V

Then the battery is removed from the circuit: this means that the coil will discharge through the resistor.

The voltage on the coil is given by

V_L(t) = -V e^{-\frac{t}{\tau}} (1)

which means that it is maximum at the moment when the battery is disconnected, when t=0:

V_L(0)=.V

And V this time is the voltage across the resistor, 19.2 V (because the coil is now connected to the resistor, not to the battery). So, the voltage across the coil will be -19.2 V, and the voltage across the resistor will be the same in magnitude, 19.2 V (since the coil and the resistor are connected to the same points in the circuit): however, the signs of the potential difference will be opposite.

(e-b) 0 V on both

After several seconds,

t>>\tau

If we use this approximation into the formula

V_L(t) = -V e^{-\frac{t}{\tau}} (1)

We find that

V_L = 0

And since now the resistor is directly connected to the coil, the voltage in the resistor will be the same as the coil, so 0 V. This means that the coil has completely discharged, and current is no longer flowing through the circuit.

7 0
3 years ago
If V has a magnitude of 14 units and the same direction qs a vector 3i+6j+2k find v​
melomori [17]

Answer:

v = 6i + 12j + 4k

Explanation:

Find the magnitude of the direction vector.

√(3² + 6² + 2²) = 7

Normalize the direction vector.

3/7 i + 6/7 j + 2/7 k

Multiply by the magnitude of v.

v = 14 (3/7 i + 6/7 j + 2/7 k)

v = 6i + 12j + 4k

7 0
3 years ago
Plzzzzz help me plzzz
yarga [219]
8 miles per hour

(extra space)
6 0
3 years ago
Read 2 more answers
State Pascal's principle of transmission of pressure​
bulgar [2K]

Answer:

Pascal's law (also Pascal's principle or the principle of transmission of fluid-pressure) is a principle in fluid mechanics given by Blaise Pascal that states that a pressure change at any point in a confined incompressible fluid is transmitted throughout the fluid such that the same change occurs everywhere.

4 0
3 years ago
Other questions:
  • If you move a negatively charged rod close to a neutral item, like a doorknob the electrons on the doorknob will
    5·2 answers
  • A 1.41 µF capacitor charged to 51 V and a 2.49 µF capacitor charged to 31 V are connected to each other, with the two positive p
    14·2 answers
  • I WILL MARK YOU AS BRAINLIEST IF RIGHT
    10·1 answer
  • What is the longest wavelength in the molecule’s fluorescence spectrum?
    10·2 answers
  • What is the maximum speed (in units of m/s) with which a car can round a
    10·1 answer
  • A 200 turn coil is in a uniform magnetic field that is decreasing at the rate 0.20 T/s. The coil is perpendicular to the field a
    14·1 answer
  • What type of electromagnetic waves will we need to use to complete our discussion-based assessment in the virtual meeting room?
    9·1 answer
  • Franny drew a diagram to compare images produced by concave and convex lenses.
    5·2 answers
  • Calculate the kinetic energy of a 8 kg object moving at a velocity of 4 m/s.
    9·2 answers
  • 20 POINTS: <br> Why does the initial hill of a roller coaster need to be steep?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!