Answer:
704.6 g CO2
Explanation:
MM sucrose = 342.3 g/mol
MM CO2 = 44.01 g/mol
g CO2 = 456.7 g sucrose x (1 mol sucrose/MM sucrose) x (12 moles CO2/1 mol sucrose) x (MM CO2/1mol CO2) = 704.6 g CO2
the energy gained by proteins and carbohydrates differs from the energy gained by fats.
proteins and carbohydrates both give 4 kcal per gram
fats give 9 kcal per gram
mass of proteins - 2 g
energy given by proteins - 2 g x 4 kcal/g = 8 cal
mass of carbohydrates - 20 g
energy given by carbohydrates - 20 g x 4 kcal/g = 80 cal
mass of fat - 1 g
energy given by fat - 1 g x 9 kcal/g = 9 cal
total energy = 8 + 80 + 9 = 97 kcal
energy = 97 kcal
Given what we know, we can confirm that the amount of heat energy that would be required in order to boil 5.05g of water is that of 11.4kJ of heat.
<h3>Why does it take this much energy to boil the water?</h3>
We arrive at this number by taking into account the energy needed to boil 1g of water to its vaporization point. This results in the use of 2260 J of heat energy. We then take this number and multiply it by the total grams of water being heated, in this case, 5.05g, which gives us our answer of 11.4 kJ of energy required.
Therefore, we can confirm that the amount of heat energy that would be required in order to boil 5.05g of water is that of 11.4kJ of heat.
To learn more about the behavior of water visit:
brainly.com/question/1416592?referrer=searchResults
The correct answer for this question would be option B. The common name of the group whose members are characterized by endoskeleton and a unique water vascular system are called the <span> Echinoderms. Examples of echinoderms are starfish, sea urchin, feather stars and sea cucumbers. Hope this is the answer that you are looking for.</span>
According to Raoult's law, Vapor pressure is directly proportional to the mole fraction of the solution. As 1.0 M CaF2 has least moles here, it has lowest vapor pressure.
In short, Your Answer would be Option D
Hope this helps!