Answer:
Shown below
Explanation:
a) for BrN3
80+3(14)=122amu
b) forC2H6
2(12) + 6(1) = 30amu
C) for NF2
14+2(19) = 52amu
D) Al2S3
2(27) + 3(32)= 150amu
E) for Fe(NO3)3
56 + 3 [14+3(16)] =242amu
F) Mg3N2
3(24) + 2(14)= 100amu
G) for (NH4)2CO3
2[14 +4(1)] +12 +3(16)=96amu
1) is called 3-methyl hexane because we choose the longest possible continuous chain which has 6 carbons and start numbering from the side that gives the branch lowest possible number.
2) is called 2-methyl-2-butene because we have to give the double bond lowest possible number but in this case double bond in position 2 from both sides so we start from the side gives the branch number 2 not 3
3) is called 7-Ethyl-4-decyne because we have to start from the side that gives the triple bond lowest possible number which is 4 and the branch will be at position 7 (note that the name of 10 carbon is incorrectly written in the choices is called decane (as alkane) or decyne when contains triple bond)
4) is called 2,3-Dimethyl pentane because it is 5 carbons (pentane) and we have two branches of the same alkyl (dimethyl) in positions 2 and 3
5) is called 1-Butanol because it contains 4 carbons and has one OH as functional group which take the suffix -ol in position 1 so we said the name as 1-butanol (remember to give the functional group lowest possible number)
6) is called propyl butyl ether because the longest chain is 4 carbons which called butyl and the smallest chain is propyl, it also has another name 1-Propoxy butane <span />
Answer:
Hi There! I'm new so I hope I get This Right! ^^
Explanation:
double blind test. the control group receives a placebo. Why is a placebo used in a double-blind test? so that the effects on people in two different groups can be compared.
happy To Help! ^^
An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit The word was coined by William Wheel at the request of the scientist Michael Faraday from the Greek words electron, meaning amber and hods, a way.
This problem is providing the initial volume and pressure of nitrogen in a piston-cylinder system and asks for the final pressure it will have when the volume increases. At the end, the answer turns out to be 2.90 atm.
<h3>Boyle's law</h3>
In chemistry, gas laws are used so as to understand the volume-pressure-temperature-moles behavior in ideal gases and relate different pairs of variables.
In this case, we focus on the Boyle's law as an inversely proportional relationship between both pressure and volume at constant both temperature and moles:

Thus, we solve for the final pressure by dividing both sides by V2:

Hence, we plug in both the initial pressure and volume and final volume in order to calculate the final pressure:

Learn more about ideal gases: brainly.com/question/8711877