Answer:
pH = 1.85
Explanation:
The reaction of H₂NNH₂ with HNO₃ is::
H₂NNH₂ + HNO₃ → H₂NNH₃⁺ + NO₃⁻
Moles of H₂NNH₂ and HNO₃ are:
H₂NNH₂: 0.0400L ₓ (0.200mol / L) = 8.00x10⁻³ moles of H₂NNH₂
HNO₃: 0.1000L ₓ (0.100mol / L) = 0.01 moles of HNO₃
As moles of HNO₃ > moles of H₂NNH₂, all H₂NNH₂ will react producing H₂NNH₃⁺, but you will have an excess of HNO₃ (Strong acid).
Moles of HNO₃ in excess are:
0.01 mol - 8.00x10⁻³ moles = 2.00x10⁻³ moles of HNO₃ = moles of H⁺
Total volume is 100.0mL + 40.0mL = 140.0mL = 0.1400L.
Thus, [H⁺] is:
[H⁺] = 2.00x10⁻³ moles / 0.1400L = 0.0143M
As pH = - log [H⁺]
<h3>pH = 1.85 </h3>
Answer:
The final temperature will be close to 20°C
Explanation:
First of all, the resulting temperature of the mix can't be higher than the hot substance's (80°C) or lower than the cold one's (20°C). So options d) and e) are imposible.
Now, due to the high heat capacity of water (4,1813 J/mol*K) it can absorb a huge amount of heat without having a great increment in its temperature. On the other hand, copper have a small heat capacity (0,385 J/mol*K)in comparison.
In conclusion, the copper will release its heat decreasing importantly its temperature and the water will absorb that heat resulting in a small increment of temperature. So the final temperature will be close to 20°C
<u>This analysis can be done because we have equal masses of both substances. </u>
There are essentially 5 states of matter-
1) Solid
2) Liquid
3) Gas
4) Plasma
5) Bose-Einstein Condensate
Plasma comprises of positive and negatively charged particles that are formed in extremely high temperature conditions. A characteristic of plasma is that it is not dense enough. The ions tend to be far apart, which makes them to spread out and imparts compressibility.
Ans B)
Amount of a substance (called the solute) that dissolves in a unit volume of a liquid substance (called the solvent) to form a saturated solution under specified conditions of temperature and pressure.Solubility is expressed usually as moles of solute per 100 grams of solvent.