1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kogti [31]
2 years ago
7

A stationary charge is located between the poles of a horseshoe magnet. Is a magnetic force excerted of the charge? why?

Physics
1 answer:
vredina [299]2 years ago
7 0

A stationary charge is located between the poles of a horseshoe magnet. The magnetic force exerted by the charge is zero.

<h3>What is charge?</h3>

Charge is the physical property of matter which cause a particle to attract or repel when placed in its field.

A stationary charged particle does not interact with a static magnetic field. A charge placed in a magnetic field experiences a magnetic force. There will be no magnetic force acting on a stationary charge. The charge must be moving in order to have magnetic force on it.

Thus, the magnetic force exerted by the charge is zero.

Learn more about charge.

brainly.com/question/19886264

#SPJ4

You might be interested in
how is the position of electrons involved in metallic bonding different from the position of electrons that form ionic and coval
Yuri [45]
While ionic bonds join metals to nonmetals, and covalent bonds join nonmetals to nonmetals, metallic bonds are responsible for the bondingbetween metal atoms. In metallic bonds, the valence electrons from the s and p orbitals of the interacting metal atoms delocalize.

I hope that this answer helps you out
7 0
3 years ago
3. A football is kicked with a speed of 35 m/s at an angle of 40°.
jarptica [38.1K]

a) 22.5 m/s

The initial vertical velocity is given by:

u_y = u sin \theta

where

u = 35 m/s is the initial speed

\theta=40^{\circ} is the angle of projection of the ball

Substituting into the equation, we find

u_y = (35)(sin 40)=22.5 m/s

b) 26.8 m/s

The initial horizontal velocity is given by:

u_x = u cos \theta

where

u = 35 m/s is the initial speed

\theta=40^{\circ} is the angle of projection of the ball

Substituting into the equation, we find

u_x = (35)(cos 40)=26.8 m/s

c) 2.30 s

The time it takes for the ball to reach the maximum heigth can be found by considering the vertical motion only. This is a uniformly accelerated motion (free-fall), so we can use the suvat equation

v_y = u_y + at

where

v_y is the vertical velocity at time t

u_y = 22.5 m/s

a=g=-9.8 m/s^2 is the acceleration of gravity (negative because it is downward)

At the maximum height, the vertical velocity becomes zero, v_y =0; substituting, we find the time t at which this happens:

0=u_y + gt\\t=-\frac{u_y}{g}=-\frac{22.5}{-9.8}=2.30 s

d) 25.8 m

The maximum height can also be found by considering the vertical motion only. We can use the following suvat equation:

s=u_y t + \frac{1}{2}gt^2

where

s is the vertical displacement at time t

u_y = 22.5 m/s

g=-9.8 m/s^2

Substituting t = 2.30 s, we find the displacement at maximum height, so the maximum height:

s=(22.5)(2.30)+\frac{1}{2}(-9.8)(2.30)^2=25.8 m

e) 123.3 m

In order to find how far does the ball lands, we have to consider the horizontal motion.

First of all, the time it takes for the ball to go back to the ground is twice the time needed for reaching the maximum height:

t=2(2.30 s)=4.60 s

Then, we consider the horizontal motion. There is no acceleration along this direction, so the horizontal velocity is constant:

v_x = 26.8 m/s

Therefore, the horizontal distance travelled during the whole motion is

d=v_x t = (26.8)(4.60)=123.3 m

So, the ball lands 123.3 m far from the initial point.

4 0
3 years ago
How is force related to math
dybincka [34]

Answer:

Newton's second law of motion describes the relationship between force and acceleration. They are directly proportional. If you increase the force applied to an object, the acceleration of that object increases by the same factor. In short, force equals mass times acceleration.

Explanation:

8 0
3 years ago
Read 2 more answers
What is the volume of this bubble when it reaches the surface?
steposvetlana [31]

Answer:

Volume will be 15 mL. Solution:- If we look at the given information then it is Boyle's law as the temperature is constant and the volume changes inversely as the pressure changes. So, the volume of the air bubble at the surface will be 15 mL.

8 0
3 years ago
When a hailstone is at a height of 2.00km it’s mass is 2.50g what is it’s potential energy?
scZoUnD [109]

Answer:

EP = 49.05Joules (J)

Explanation:

The equation for Potential energy (EP) is

EP = m g h

We are given the values below (do convert them into SI units)

m = 0.0025kg

h = 2000m

g = 9.81m/s^{2}

Substitute the values into the equation and solve for EP

EP = 0.0025 * 2000 * 9.81

EP = 49.05Joules (J)

6 0
3 years ago
Other questions:
  • A very massive object A and a less massive object B move toward each other under the influence of gravity. Which force, if eithe
    12·1 answer
  • What can experiments tell us that other studies cant
    12·1 answer
  • Jill pulls on a rope to lift a 12 kg pail out of a well, while the clumsy Jack watches. For a 10.0 meter segment of the lift, sh
    14·1 answer
  • An elephant's legs have a reasonably uniform cross section from top to bottom, and they are quite long, pivoting high on the ani
    9·1 answer
  • An eagle carrying a trout flies above a lake along a horizontal path. The eagle drops the trout from a height of 6.1 m. The fish
    9·2 answers
  • 008 (part 1 of 3) 10.0 points A 0.338 kg particle has a speed of 3.8 m/s at point A and kinetic energy of 10.1 J at point B. Wha
    6·1 answer
  • What is the best explanation for the observation that the electric charge on the stem became positive as the charged bee approac
    7·1 answer
  • Select all of the statements that are true.
    12·1 answer
  • 1) [25 pts] A 90-kg merry-go-round of radius 2.0 m is spinning at a constant speed of 20 revolutions per minute. A kid standing
    10·1 answer
  • A ski gondola is connected to the top of a hill by a steel cable of length 600 m and diameter 1.2 cm . As the gondola comes to t
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!