The answer is: <span>Light strikes a beautiful white perch under water. This light is reflected back to your eyes allowing you to see the fish. As the light left the water it changes speed causing the light to bend away from the normal.
Hope this helps!
(got answer from </span>https://quizlet.com/5474123/chapter-13-light-flash-cards/ if you need more help)
In a plastic sheet protector
The density of the rock is 3.314g/mL
CALCULATE DENSITY:
- According to this question, a rock weighs 23.2g. After dropping the rock into a graduated cylinder containing 55mL of water, the level changes to 62mL.
- This means that the volume of the rock can be calculated as follows:
Volume of rock = 62mL - 55mL
Volume of rock = 7mL
Density can be calculated using the formula as follows:
Density = mass ÷ volume
Density = 23.2 ÷ 7
Density = 3.314g/mL
Therefore, the density of the rock is 3.314g/mL
Learn more: brainly.com/question/6034174?referrer=searchResults
This problem is describing a gas mixture whose mole fraction of hexane in nitrogen is 0.58 and which is being fed to a condenser at 75 °C and 3.0 atm, obtaining a product at 3.0 atm and 20 °C, so that the removed heat from the system is required.
In this case, it is recommended to write the enthalpy for each substance as follows:

Whereas the specific heat of liquid and gaseous n-hexane are about 200 J/(mol*K) and 160 J/(mol*K) respectively, its condensation enthalpy is 31.5 kJ/mol, boiling point is 69 °C and the specific heat of gaseous nitrogen is about 29.1 J/(mol*K) according to the NIST data tables and
and
are the mole fractions in the gaseous mixture. Next, we proceed to the calculation of both heat terms as shown below:

It is seen that the heat released by the nitrogen is neglectable in comparison to n-hexanes, however, a rigorous calculation is being presented. Then, we add the previously calculated enthalpies to compute the amount of heat that is removed by the condenser:

Finally we convert this result to kJ:

Learn more: