Answer:
The molar mass of
is 342.145 g/mol
Explanation:
The molar mass is stated as the “mass per unit amount of substance”of a given chemical compound
is Aluminium sulphate. They easily dissolve in water. It is primarily used as a 'coagulating agent' in the drinking water purification and also in waste and sewage water treatment plants,
We know,
Atomic weight of Aluminium = 26.981
Atomic weight of Sulphur= 32.065
Atomic weight of Oxygen = 15.9994
Now molar mass of
(Aluminium sulphate) is
=>2(26.981)+3(32.065+4(15.999))
=>53.962 +3(32.065+63.996)
=>53.962+3(96.061)
=>53.962+288.183
=>342.145
Answer:
Iron slowly reacts with oxygen and forms rust. In this case, the reactants are iron and oxygen. The product is rust, or iron oxide. The chemical equation looks like this:
Explanation:
iron + oxygen → iron oxide
Answer:
- last option: none of<u> the above.</u>
Explanation:
Describing a solution as<em> concentrated</em> tells that the solution has a relative large concentration, but it is a qualitative description, not a quantitative one, so this does not tell really how concentrated the solution is. This is, the term concentrated is a kind of vague; it just lets you know that the solution is not very diluted, but, as said initially, that there is a relative large amount (concentration) of solute.
One conclusion, of course, is that <u>the solute is soluble</u>: else the solution were not concentrated.
On the other hand, the terms saturated and <em>supersaturated</em> to define a solution are specific.
A saturated solution has all the solute that certain amount of solvent can contain, at a given temperature. A <u>supersaturated solution has more solute dissolved than the saturated solution</u> at the same temperature; superstaturation is a very unstable condition.
From above, there is no way that you can conclude whether a solution is supersaturated or not from the statement that a solution is concentrated, so the answer is<u> none of the above</u>.
Answer is: the specific heat capacity of the metal is <span>A) 0.129 J/gK.
</span>m(metal) = 15,1 g.
Q = 48,75 J.
ΔT = 25 K.
Q = C · ΔT · m(metal).
C = Q ÷ ΔT · m(metal).
C = 48,75 J ÷ 25 K · 15,1 g.
C = 0,129 J/g·K.
Answer:
The answer to your question is below
Explanation:
There are 4 types of chemical reactions:
- Synthesis is when two elements or compounds form only one compound.
- Decomposition is when 1 compound is broken into 2 or more products.
- Single replacement is when one element is replaced by another element.
- Double replacement is when the cations of two compounds are interchanged.
6.- Synthesis Al + 3Cl ⇒ AlCl₃
7.- Double replacement 2NaOH + H₂SO₄ ⇒ Na₂SO₄ + 2H₂O
8.- Decomposition Ni(ClO₃)₂ ⇒ NiCl₂ + 3O₂
9.- Combustion 2C₄H₁₀ + 13O₂ ⇒ 8CO₂ + 10H₂O
10.- Single replacement Zn + 2HCl ⇒ ZnCl₂ + H₂