Answer:
The answer is below
Explanation:
The initial velocity = u = 82.5 km/h = 22.92 m/s, the final velocity = 32.5 km/h = 9.03 m/s, diameter = 91.55 cm = 0.9144 cm
radius (r) = diameter / 2 = 0.9144 / 2= 0.4572 m
a) Initial angular velocity (
) = u /r = 22.92 / 0.4572 = 50.13 rad/s, final velocity (ω) = v / r = 9.03 / 0.4592 = 19.67 rad / s
θ = 95 rev * 2πr = 95 * 2π * 0.4572= 272.9 rad
angular acceleration (α) is:

b)
c) θ = 95 rev * 2πr = 95 * 2π * 0.4572= 272.9 rad
a) When it stops, the final angular velocity is 0. Hence:

θ = 323 rad
Answer:

Explanation:
Velocity of the ship is given as

the direction of the velocity of the ship is making an angle of 11 degree with the current
so we will have two components of the velocity
1) along the direction of the current
2) perpendicular to the direction of the current
so here we know that the component of the ship velocity along the direction of the current is given as



Small evidence is also called trace evidence.
The density of seawater at a depth where the pressure is 500 atm is 
Explanation:
The relationship between bulk modulus and pressure is the following:

where
B is the bulk modulus
is the density at surface
is the variation of pressure
is the variation of density
In this problem, we have:
is the bulk modulus

is the change in pressure with respect to the surface (the pressure at the surface is 1 atm)
Therefore, we can find the density of the water where the pressure is 500 atm as follows:

Learn more about pressure in a fluid:
brainly.com/question/9805263
#LearnwithBrainly