Part (a): Magnetic dipole moment
Magnetic dipole moment = IA, I = Current, A = Area of the loop
Then,
Magnetic dipole moment = 2.6*π*0.15^2 = 0.184 Am^2
Part (b): Torque acting on the loop
T = IAB SinФ, where B = Magnetic field, Ф = Angle
Then,
T = Magnetic dipole moment*B*SinФ = 0.184*12*Sin 41 = 1.447 Nm
Radiant energy is the energy of electromagnetic and gravitational radiation
Answer: 1
Explanation:
Given
Tension is the string 
mass of object 
Tension is greater than the weight of the object i.e. elevator is moving upward
we can write

The complete question is as follows: A student is subjected to a reaction force of 10 N northward from a 5 kg block while pushing the block over a smooth, level surface. Ignoring friction, what is the acceleration of the block?
Answer: The acceleration of the block is
.
Explanation:
Given: Force = 10 N
Mass = 5 kg
It is known that force applied on an object is the product of mass and acceleration.
Mathematically, 
where,
F = force
m = mass
a = acceleration
Substitute the values into above formula as follows.
Thus, we can conclude that the acceleration of block is
.
Answer:
5.38 m/s
Explanation:
Given (in the x direction):
Δx = 2.45 m
v₀ = v cos 42.5°
a = 0 m/s²
Δx = v₀ t + ½ at²
(2.45 m) = (v cos 42.5°) t + ½ (0 m/s²) t²
2.45 = (v cos 42.5°) t
t = 3.32 / v
Given (in the y direction):
Δy = 0.373 m
v₀ = v sin 42.5°
a = -9.8 m/s²
Δx = v₀ t + ½ at²
(0.373 m) = (v sin 42.5°) t + ½ (-9.81 m/s²) t²
0.373 = (v sin 42.5°) t − 4.905 t²
0.373 = (v sin 42.5°) (3.32 / v) − 4.905 (3.32 / v)²
0.373 = 2.25 − 54.2 / v²
v = 5.38
Graph:
desmos.com/calculator/5n30oxqmuu