Answer:
The required diagram is shown in the figure. When an object is placed in front of the convex lens, i.e., between 2F
1
and F
1
, its image is formed beyond 2F
2
on the other side of the lens. The image is real, inverted and enlarged.
solution
Explanation:
(a) Given:
Δx = 150 m
v₀ = 27 m/s
v = 54 m/s
Find: a
v² = v₀² + 2aΔx
(54 m/s)² = (27 m/s)² + 2a (150 m)
a = 7.29 m/s²
(b) Given:
Δx = 150 m
v₀ = 0 m/s
a = 7.29 m/s²
Find: t
Δx = v₀ t + ½ at²
150 m = (0 m/s) t + ½ (7.29 m/s²) t²
t = 6.42 s
(c) Given:
v₀ = 0 m/s
v = 27 m/s
a = 7.29 m/s²
Find: t
v = at + v₀
27 m/s = (7.29 m/s²) t + 0 m/s
t = 3.70 s
(d) Given:
v₀ = 0 m/s
v = 27 m/s
a = 7.29 m/s²
Find: Δx
v² = v₀² + 2aΔx
(27 m/s)² = (0 m/s)² + 2 (7.29 m/s²) Δx
Δx = 50 m
Answer:
1m/s [E]
Explanation:
So for displacement, its saying she went 3000m east and 2000m west. Since these two are in different directions, you would change the sign of one of them to change the direction;
3000m [E] + 2000m [W] = d
3000m [E] - 2000m [E] = d
1000m [E] = d
And its saying the time is 1000 seconds, so using velocity formula:
v = d/t
v=1000m[E] / 1000s
v = 1 m/s [E]
It results from the vibration of particles. ... Temperature increases the speed of sound wave as particles at higher temperatures tend to possess more energy and thus they will vibrate faster and thus the sound wave will travel faster.