Answer:
The answer is (d) I promise i'm not lying I just checked on my test
.
Explanation:
Answer:
Option (d) is correct.
Explanation:
Work done is given by :
W = Fd, where F is force and d is displacement
Unit of work done :
The SI unit of force is Newton (N) and that of displacement is meter (m). So, the unit of work done is N-m. It is call Joule. It means that the unit of work done is Joule.
Power is given by rate at which the work is done. It is given by :
P = W/t, W is work done and t is time
Unit of power:
Unit of work is Joule (J) and that of time is second (s). It means that the unit of power is Watt and it is equal to Joule/second
Hence, the correct option is (d) "The unit for work is a joule. The unit for power is a watt, which is a joule per second".
Answer: E. None of the above
Explanation: The energy of a photon is given by the formula below.
E=hf or E = hc/λ
E = energy, h = planck constant, c= speed of light and
λ= wavelength.
From E=hf we can see that energy is directly proportional to frequency since h is a constant, this implies that as we move up the visible light spectrum, red light has the least frequency this accounting for the lowest energy while violet has the largest energy accounting for a very high energy.
Blue light is higher in the spectrum than red light.
This implies that blue light has more energy than red.
Visible light is part of the electromagnetic spectrum which implies that they all travel with the same speed of a constant value ( speed of light = 3* 10^8 m/s).
Thus in conclusion, blue light has more energy that red light but they both travel with the same speed.
This point nullifies the options thus making none of it correct.
Answer: The question is incomplete or some details are missing. Here is the complete question ; (a) The driver of a car slams on the brakes when he sees a tree blocking the road. The car slows uniformly with acceleration of −5.55 m/s2 for 4.05 s, making straight skid marks 63.0 m long, all the way to the tree. With what speed (in m/s) does the car then strike the tree? m/s
(b) What If? If the car has the same initial velocity, and if the driver slams on the brakes at the same distance from the tree, then what would the acceleration need to be (in m/s2) so that the car narrowly avoids a collision? m/s2
a ) With what speed (in m/s) does the car then strike the tree? m/s = 4.3125m/s
b) then what would the acceleration need to be (in m/s2) so that the car narrowly avoids a collision? m/s2 = -5.696m/s2
Explanation:
The detailed steps and calculation is as shown in the attached file.
Answer:
The Answer is B because the material the object is made of, the position, or the color have absolutely nothing to do with gravitational potential energy