1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexxx [7]
2 years ago
12

Can someone help me for this question?​

Physics
1 answer:
LUCKY_DIMON [66]2 years ago
4 0

Answer:

A, 0.050 Hz

Explanation:

1) Frequency = speed divided by wavelength

time is 2* 60 = 120 seconds

distance = 6 wave lengths

speed = distance divided by time

speed = 6 wave lengths divided by 120

Hope this helps!

You might be interested in
A small car with mass of 0.800 kg travels at a constant speed
Alexandra [31]

Answer:

The equation of equilibrium at the top of the vertical circle is:

\Sigma F = - N - m\cdot g = - m \cdot \frac{v^{2}}{R}

The speed experimented by the car is:

\frac{N}{m}+g=\frac{v^{2}}{R}

v = \sqrt{R\cdot (\frac{N}{m}+g) }

v = \sqrt{(5\,m)\cdot (\frac{6\,N}{0.8\,kg} +9.807\,\frac{kg}{m^{2}} )}

v\approx 9.302\,\frac{m}{s}

The equation of equilibrium at the bottom of the vertical circle is:

\Sigma F = N - m\cdot g = m \cdot \frac{v^{2}}{R}

The normal force on the car when it is at the bottom of the track is:

N=m\cdot (\frac{v^{2}}{R}+g )

N = (0.8\,kg)\cdot \left(\frac{(9.302\,\frac{m}{s} )^{2}}{5\,m}+ 9.807\,\frac{m}{s^{2}} \right)

N=21.690\,N

7 0
2 years ago
Listed following are the names and mirror diameters for six of the world’s greatest reflecting telescopes used to gather visible
ziro4ka [17]

Answer:

Large binocular telescope, Keck 1 telescope, Hobby-Ebberly telescope, Subaru telescope, Gemini North telescope, Magellan 2 telescope

Explanation:

How much light a telescope can collect depends on its diameter, since in a bigger area more photons will be collected.    

Remember that in a circle the area is defined as:

A = \pi r^{2}  (1)

Where A is the area and r is its radius.

However, the radius can be determined by means of its diameter.

     

d = 2r

r = \frac{d}{2} (1)

Where d is its diameter.

An example of this is when a person is collecting raindrops with a bucket and with a cup. Since the bucket has a bigger area than the cup, it will collect more raindrops by unit of time. In this scenario the raindrops represent the photons.  

   

To determine the light collecting area of each telescope, equation 2 will be replaced in equation 1.

A = \pi (\frac{d}{2})^{2}  (3)

Case for Large binocular telescope:

A_{mirror1} = \pi (\frac{8.4m}{2})^{2}    

A_{mirror1} = 55.41m        

For the second mirror will be the same value

A = A_{mirror1}+A_{mirror2}  

A = 55.41m+55.41m

A= 110.82m

Case for Keck 1 telescope:

A = \pi (\frac{10m}{2})^{2}    

A = 78.53m  

Case for Hobby-Ebberly telescope:

A = \pi (\frac{9.2m}{2})^{2}    

A = 66.47m  

Case for Subaru telescope:

A = \pi (\frac{8.3m}{2})^{2}    

A = 54.10m  

Case for Gemini North telescope:

A = \pi (\frac{8m}{2})^{2}    

A = 50.26m  

Case for Magellan 2 telescope:

A = \pi (\frac{6.5m}{2})^{2}    

A = 33.18m  

Hence, they may be rank in the following way:

Large binocular telescope, Keck 1 telescope, Hobby-Ebberly telescope, Subaru telescope, Gemini North telescope, Magellan 2 telescope.

<em>Key term:</em>

<em>Photons: particles that constitute light. </em>

3 0
3 years ago
Critical angle of glass is 42 .what does it mean?​
elena55 [62]

Answer:

i think..its fraction that its have multiple fractions on it..if you minus the 397 000-355 it should be 381+ so i say if you get the 5 multiply it by 9!! so you will get it!

Explanation:

HOPE IT HELPS!!

6 0
3 years ago
Consider the position vs. time graph below for a woman's movement in a hallway. What is the woman's velocity from 4 to 5 s?
Ksenya-84 [330]

Answer:

The answer is "6\  \frac{m}{s}"

Explanation:

The formula for velocity:

\to \overline{v}={\frac{\Delta x}{\Delta t}}

      =\frac{6}{1}\\\\=6\  \frac{m}{s}

7 0
2 years ago
Please help on this one somebody?
coldgirl [10]

7.5 x 10⁻¹¹m. An electromagnetic wave of frecuency 4.0 x 10¹⁸Hz has a wavelength of 7.5 x 10⁻¹¹m.

Wavelength is the distance traveled by a periodic disturbance that propagates through a medium in a certain time interval. The wavelength, also known as the space period, is the inverse of the frequency. The wavelength is usually represented by the Greek letter λ.

λ = v/f. Where v is the speed of propagation of the wave, and "f" is the frequency.

An electromagnetic wave has a frecuency of 4.0 x 10 ¹⁸Hz and the speed of light is 3.0 x 10⁸ m/s. So:

λ = (3.0 x 10⁸ m/s)/(4.0 x 10¹⁸ Hz)

λ = 7.5 x 10⁻¹¹m

8 0
3 years ago
Other questions:
  • The famous black planet, haunch, has a radius of 106 m, a gravitational acceleration at the surface of 4 m/s2 , and the tangenti
    7·1 answer
  • Some birds migrate 20,000 miles. If 1 mile equals 1.6 kilometers, calate the distance these birds fly in kilometers.
    6·1 answer
  • The video shows a collapsing cloud of interstellar gas, which is held together by the mutual gravitational attraction of all the
    11·1 answer
  • At what speed, in m/s, would a moving clock lose 4.5 ns in 1.0 day according to experimenters on the ground
    15·1 answer
  • Use the drop-down menus to complete the passage. A galvanometer detects by showing needle movement in . If the wires in this gal
    6·2 answers
  • Why does a Tumbling Kelly toy return to its original position? (The oval shape is made out of plastic and lead at the bottom).
    8·1 answer
  • Does visible have more energy than infrared radiation?
    15·1 answer
  • Gravitational potential energy depends on the ____________ of the object.
    12·1 answer
  • Anser the photo and i'll give brainlest
    15·1 answer
  • Find the cross-sectional area.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!