It would be Atoms, they’re all made up of these tiny particles
The work done by a rotating object can be calculated by the formula Work = Torque * angle.
This is analog to the work done by the linear motion where torque is analog to force and angle is analog to distance. This is Work = Force * distance.
An example will help you. Say that you want to calculate the work made by an engine that rotates a propeller with a torque of 1000 Newton*meter over 50 revolution.
The formula is Work = torque * angle.
Torque = 1000 N*m
Angle = [50 revolutions] * [2π radians/revolution] = 100π radians
=> Work = [1000 N*m] * [100π radians] = 100000π Joules ≈ 314159 Joules of work.
C. Thick wire and cold temperature.
Explanation:
The resistance of a wire is given by: R = (ρL)/A
where ρ is the resistivity of the material, L is the length of the wire, A is the cross-sectional area of the wire.
From the formula, we see that the thicker the wire, the larger A, therefore the smaller the resistivity. so, a thick wire will have lower resistivity.
Moreover, the resistance of a wire increases with the temperature. In fact, high temperatures mean more motion of the atoms/electrons inside the wire, so more resistance to the flow of current through it. Therefore, colder temperature means lower resistance.
So, the correct option is thick wire and cold temperature.
Answer:
5. dispersion
6. 49.8°
Explanation:
5. Dispersion is the name given to the phenomenon of light of different wavelengths being bent differently. A rainbow is the result of light from a point source (the sun) being spread out by wavelength (color), a nice example of dispersion.
___
6. n = 1.31 is the ratio of the sine of the angle of refraction to the sine of the angle of incidence (for light passing to a medium of n = 1). When the angle of refraction is 90°, the angle of incidence is the "critical angle." So, ...
sin(90°)/sin(critical) = 1.31
critical angle = arcsin(1/1.31) ≈ 49.8°
Answer:
103239.89 days
Explanation:
Kepler's third law states that the square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit.
a³ / T² = 7.496 × 10⁻⁶ (a.u.³/days²)
where,
a is the distance of the semi-major axis in a.u
T is the orbit time in days
Converting the mean distance of the new planet to astronomical unit (a.u.)
1 a.u = 9.296 × 10⁷ miles

Substituting the values into Kepler's third law equation;
(days)²

T = 103239.89 days
An estimate time T for the new planet to travel around the sun in an orbit is 103239.89 days