Answer:
After the transfer the pressure inside the 20 L vessel is 0.6 atm.
Explanation:
Considering O2 as an ideal gas, it is at an initial state (1) with V1 = 3L and P1 = 4 atm. And a final state (2) with V2 = 20L. The temperature remain constant at all the process, thus here applies the Boyle-Mariotte law. This law establishes that at a constant temperature an ideal gas the relationship between pressure and volume remain constant at all time:

Therefore, for this problem the step by step explanation is:

Clearing P2 and replacing

Answer:
Explanation:
any type of spreading disease that kills
A COVALENT BOND, FORMS BETWEEN ELEMENTS WITH SIMILAR ELECTRONEGATIVITY AS SHARING OF ELECTRON PAIRS BETWEEN ATOMS IS EASIER AS THEY ARE IDENTICAL.
Explanation:
Bonding atoms with similar electronegativity values form covalent bonds.
A covalent bond, also called a molecular bond, is a chemical bond that involves the sharing of electron pairs between atoms.
Covalent bonds form between two nonmetal atoms with identical or relatively close electronegativity values
Electronegativity is a measure of the tendency of an atom to attract a bonding pair of electrons, also it is the strength an atom has to attract a bonding pair of electrons to itself.
Pure covalent bonds result when two atoms of the same electronegativity bond. This occurs only when two atoms of the same element bond with each other.