Answer:
the resistors In series have much power
Answer:
Artificial weight = 70.27 N = 15.80 lbs
Explanation:
The earth weight of the astronaut = 160 lbs = 711.72 N
The weight on earth = m × g(earth)
g(earth) = 9.8 m/s²
711.72 = m × 9.8
m = (711.72/9.8)
m = 72.62 kg
But at the space station, the space station rotates once every 70 s to create an artificial radial acceleration that creates a radial gravity pulling the objects on the space station towards the centre of that space station.
radial acceleration = α = (v²/r)
v = rw,
α = (rw)²/r
α = rw²
r = radius of rotation = 120 m
w = angular velocity = (2π/70) (it completes 1 rotation, 2π radians, in 70 s)
w = 0.0898 rad/s
α = 120 × (0.0898²)
α = 0.968 m/s²
Artificial weight = (mass of astronaut) × (Radial acceleration) = 72.62 × 0.968
Artificial weight = 70.27 N = 15.80 lbs
Hope this Helps!!!
To solve this problem it is necessary to apply the related concepts to the principle of overlap, specifically to single slit diffraction experiment concept.
Mathematically this can be expressed as:

Where,
d = Width of the slit
Wavelength
Angle relative to the original direction of the light
m = Any integer which represent the order of the equation (number of repetition of the spectrum)
To solve the problem we need to rearrange the equation and find the wavelength

Our values are given as,



Replacing in our equation we have,




Therefore the wavelength is 523.2nm
<span>y(x,t)= 2.30mmcos[(6.98rad/m)x + (742 rad/s)t]
</span>A) Amplitude is 2.30mm<span>
B) Frequency 1/</span>2.30mm<span>
C) Wavelength is </span>6.98rad/m<span>
D) Wave Speed is </span>742 rad/s<span>
E) Direction the wave is traveling
</span>
Answer:
The order is 2>4>3>1 (TE)
Explanation:
Look up attached file