Answer:
Energy is stored in <u>glucose</u> molecules <u>C6H12O6</u>
<u />
Explanation:
Producers make sugars stored as monomers bonded together to form polysaccharides, long chain hydrocarbon molecules as a result of the process of <u>photosynthesis</u>. These molecules, like the monosaccharide glucose, store converted solar energy as stable chemical energy in covalent bonds. In covalent bonding, the elements share electrons with each other.
These high-energy bonds are stable and not easily destabilized or broken. The energy is retrieved the the process of respiration in the mitochondria.
Glucose is broken down, while energy is transferred to bonds between ADP and inorganic phosphate, to produce ATP (adenosine triphosphate).
Eg. for aerobic respiration...
C6H12O6 (glucose) + 6 O2 → 6 CO2 + 6 H2O + ≅38 ATP
glucose+ oxygen → carbon dioxide+ water+ energy
Http://www.pbs.org/wgbh/nova/cancer/folkman.html
I believe this website will help :)
In the deep layers of the ocean, various distinct kinds of species are found like fangtooth fish and vampire squid, to sea urchins and coffinfish.
One of the probable adaptation, which is not fully understood in the deep sea is gigantism. This refers to the ability of animals to become highly enormous in size. A well-known illustration is a giant squid, and others, like giant isopod, the kings of herrings selfish, and the colossal squid.
One of the possible reason of gigantism is the tendency of the species in the deep sea to live for long years, that is, for decades or for even centuries. As food is not abundant in the deep zones, thus deep sea creatures have evolved some interesting mechanisms of feeding.
In the non-existence of photosynthesis, the majority of food comprises of detritus, that is, the decaying leftovers of algae, microbes, animals, and plants from the upper layers of the ocean. Apart from that, the corpses of large animals, like whales that sink to the bottom give irregular but huge feasts for deep-sea animals.
C. Protective over young cubs
They use their resources and habitats around them to survive.