D is just straight up false, if I were to take a stab at it, the only one that’s seems logical to me B. “The ability of atoms to combine in unlimited ways”
Answer:
chocolate
Explanation:
chocolate is 17,196 litres per 1kg.
Answer: Option (D) is the correct answer.
Explanation:
Valence shell is the shell present on the outermost core of an atom and electrons present in the valence shell are known as valence electrons.
If an atom has completely filled valence shell then it means the atom is not reactive in nature because it is already stable.
But when an atom has less than eight electrons in its valence shell then it means to attain stability the atom will readily attract electrons towards itself.
As the given element 1 has 8 electrons in its valence shell. Hence, it is not reactive in nature but element 2 has 6 valence electrons. So, in order to attain stability element 2 will readily attract 2 electrons from a donor atom.
Thus, we can conclude that element 2 is more reactive because it does not have a full valence shell, so it will attract electrons.
Answer : The correct option is, (D) 
Explanation :
(A) 
This reaction is a double displacement reaction in which the cation and anion of two reactants are exchange their places to give two different products.
(B) 
This reaction is a decomposition reaction in which the larger molecule decomposes to give two or more products.
(C) 
This reaction is a neutralization reaction in which an acid and a base react to give a salt and water as a product.
(D) 
This reaction is a redox reaction in which the oxidation and reduction reaction occur simultaneously.
Oxidation reaction is the reaction in which a substance looses its electrons. In this oxidation state increases.
Reduction reaction is the reaction in which a substance gains electrons. In this oxidation state decreases.
In this reaction, magnesium shows oxidation due to change in oxidation number from (0) to (+2) and hydrogen shows reduction due to change in oxidation number from (-1) to (0).
Hence, the correct option is, (D)
Hydrogen bonding is an attractive force between a hydrogen atom attached to a electronegative element