<span>There are 5 orbitals in the d level. Each orbital holds 2 electrons for a</span>
Answer:
We need 78.9 mL of the 19.0 M NaOH solution
Explanation:
Step 1: Data given
Molarity of the original NaOH solution = 19.0 M
Molarity of the NaOH solution we want to prepare = 3.0 M
Volume of the NaOH solution we want to prepare = 500 mL = 0.500 L
Step 2: Calculate volume of the 19.0 M NaOH solution needed
C1*V1 = C2*V2
⇒with C1 = the concentration of the original NaOH solution = 19.0 M
⇒with V1 = the volume of the original NaOH solution = TO BE DETERMINED
⇒with C2 = the concentration of the NaOH solution we want to prepare = 3.0 M
⇒with V2 = the volume of the NaOH solution we want to prepare = 500 mL = 0.500 L
19.0 M * V2 = 3.0 M * 0.500 L
V2 = (3.0 M * 0.500L) / 19.0 M
V2 = 0.0789 L
We need 0.0789 L
This is 0.0789 * 10^3 mL = 78.9 mL
We need 78.9 mL of the 19.0 M NaOH solution
Answer: C. The specific heat of water is greater than the specific heat of metals.
The specific heat is defined as the amount required to raise the temperature of a unit mass of a substance by 1 degree Celsius.
This is expressed mathematically as
Q= mc∆T
Where Q is the energy/heat required which is measured in Joules.
m is the mass (grams)
c is the specific heat which is measured in joule/gram degree Celsius.
∆T- change in temperature
Substance which has a high specific heat require a lot of heat for its temperature to be raised by one degree. On the other hand substances with lower specific heat require only little amount of heat for its temperature to be raised by one degree.
Consider an equal mass of metal and water. If both are heated at the same time,the metal would become hotter than the water much faster. This is because the specific heat of the metal is lower than the water. Hence it requires only a little heat for its temperature to raised by one degree.
Thus we can conclude that the specific heat of water is much greater than that of a metal.
Answer:
See explaination
Explanation:
Go to the attached file for the detailed and step by step solution of the given.