This question doesn't appear to be complete
Answer:
659.01W
Explanation:
The cab has a mass of 1250 kg, the weight of the cab represented by Wc will be
Wc = mass of the cab × acceleration due to gravity in m/s²
Wc = 1250 × 9.81 = 12262.5 N
but the counter weight of the elevator represented by We = mass × acceleration due to gravity = 995 × 9.81 = 9760.95 N
Net weight = weight of the cab - counter weight of the elevator = Wc - We = 12262.5 - 9760.95 = 2501.55 N
the motor of the elevator will have to provide this in form of work
work done by the elevator to lift the cab to height of 49 m = net weight × distance (height) = 2501.55 × 49m
power provided by the motor of the elevator = workdone by the motor / time in seconds
Power = (2501.55 × 49) ÷ ( 3.1 × 60 seconds) = 659.01 W
Answer:
Time, t = 12 minutes
Explanation:
It is given that,
A cyclist rides 16.0 km east, then 8.0 km west, then 8.0 km east, then 32.0 km west, and finally 11.2 km east. Let west direction is negative and east direction is positive. The displacement of the cyclist is :

d = 4800 m
Let us assumed that the average speed of the cyclist is, v = 24 km/h = 6.66667 m/s
Let t is the time taken by the cyclist to complete the trip. The velocity of an object is given by :



t = 719.99 seconds
t = 720 seconds
or
t = 12 minutes
So, the time taken by the cyclist to complete the trip is 12 minutes. Yes, the time taken by the cyclist to complete the trip is reasonable. Hence, this is the required solution.
Answer:
Scientists plan to release a space probe that will enter the atmosphere of a gaseous planet. The temperature of the gaseous planet increases linearly with the height of the atmosphere as measured from the top of a visible boundary layer, defined as 0 kilometers in altitude. The instruments on board can withstand a temperature of 601 K. At what altitude will the probe's instruments fail? A. 50 kilometers B. 80 kilometers C. 83 kilometers D. 100 kilometers E. 111 kilometers
Explanation:
A. 50 kilometers
Answer:
Explanation:
A lava lamp consists of oil, and wax in a glass, and a heat source (a light bulb) placed underneath the glass. When the lamp is turned on the bulb gets hot. As the bulb heats up some of the heat from the bulb is transferred to the glass by radiation.