1) F=q[vB], where q -> charge, v-> velocity, B-> magnetic field. [ , ] -> cross product.
2) f=q*v*B*sin(11°) {1}
3) 1.6f=q*v*B*sin(alpha) {2}
4) {2} / {1} -> 1.6=sin(alpha)/sin(11°) or sin(alpha)=1.6*sin(11°) --> alpha=arcsin (1.6*sin(11°))
So, alpha=17.7°=18°
<span>The ability to navigate, hunt, and communicate by electric current in water most likely helps make up for the effect of vision. The answer to your question is VISION.
</span>If fish live in a dark, murky water, that means that their sense of vision is affected. In dark, murky water they could not see anything. So, fish that lives in this kind of water developed the ability to <span>o navigate, hunt, and communicate by electric current in water. This ability is known as electroreception. Among fish, electroreception is present in some sharks and rays, and electric eels.</span><span>
I hope that this is the answer that you were looking for and it has helped you.
</span>
(a) 1800 N
The equation of the forces along the vertical direction is:

where
is the component of the applied force along the vertical direction
N is the normal force on the sled
mg is the weight of the sled
Substituting:
F = 1210 N
m = 246 kg

We find N:

(b) 0.580
The equation of the forces along the horizontal direction is:

where
is the horizontal component of the push applied by the mule
is the static frictional force
Substituting:
F = 1210 N
N = 1800 N

We find
, the coefficient of static friction:

(c) 522 N
In this case, the force exerted by the mule is

So now the equation of the forces along the horizontal direction can be written as

where

and
is the new frictional force, which is different from part (b) (because the value of the force of friction ranges from zero to the maximum value
, depending on how much force is applied in the opposite direction)
Solving the equation,

<h2>
Answer:</h2>
<em>1.33 x 10⁻ ⁴ T outwards.</em>
<em></em>
<h2>
Explanation:</h2>
The equation for the magnetic force (F) on a wire whose length is L and carrying a current I in a magnetic field (B) that is uniform is given by;
F = ILB sin θ ---------------------(i)
Where;
θ = angle between the direction of the current and that of the magnetic field.
From the question,
F = 4.0 × 10⁻² N
I = 12A
L = 25m
θ = 90°
<em>Substitute these values into equation(i) and solve as follows;</em>
4.0 × 10⁻² = 12 x 25 x B x sin 90°
4.0 × 10⁻² = 300 x B x 1
4.0 × 10⁻² = 300B
0.04 = 300B
B = 
B = 0.000133
B = 1.33 x 10⁻ ⁴ T
To get the direction of the magnetic field, the right-hand rule is used.
If the right hand fingers are positioned in the correct order specified by the right hand rule, then it would be seen that the magnetic field is directed outwards.
Therefore, the magnitude and direction of the magnetic field at this location is <em>1.33 x 10⁻ ⁴ T outwards.</em>
In our solar system, terrestrial planets are separated from the gas giants by the asteroid belt. The asteroid belt is a region in the solar system between Mars and Jupiter where asteroids are located. Gas giants do not have a solid surface and possible a small rocky core. The gas giants are Jupiter, Saturn, Uranus and Neptune. The first four planets, Mercury, Venus, Earth and Mars.