Answer:
The outline of the energy transfer are;
a) Kinetic energy → Clockwork spring → Potential energy
b) Potential energy in clockwork car → Clockwork spring coil unwound → Clockwork car run
c) Chemical potential energy → Batteries in the car → Electric motors → Kinetic energy
Please find attached the drawings of the energy transfer created with MS Visio
Explanation:
The energy transfer diagrams are diagrams that can be used to indicate the part of a system where energy is stored and the form and location to which the energy is transferred
a) The energy transfer diagram for the winding up a clockwork car is given as follows;
Mechanical kinetic energy is used to wind up (turn) the clockwork car such that the kinetic energy is transformed into potential energy and stored in the wound up clockwork as follows;
Kinetic energy → Clockwork spring → Potential energy
b) Letting a wound up clockwork car run results in the conversion of mechanical potential energy into kinetic (energy due tom motion) energy as follows;
Potential energy in clockwork car → Clockwork spring coil unwound → Clockwork car run
c) The energy stored in the battery of a battery powered car is chemical potential energy. When the battery powered car runs, the chemical potential energy produces an electromotive force which is converted into kinetic energy as electric current flows from the batteries
Therefore, we have;
Chemical potential energy → Batteries in the car → Electric motors → Kinetic energy
 
        
             
        
        
        
Answer:
v = 8.45 m/s
Explanation:
given,
mass  = 3 kg
angle = 30.0°
vertical distance = 3.3 m
μ = 0.06
according to conservation of energy
KE(loss) = PE(gain) + Work done (against\ friction)..............(1)
frictional Force


work against friction
W = F d


Potential energy
PE = mgh


v = 8.45 m/s
the minimum speed is equal to 8.45 m/s
 
        
             
        
        
        
tail rail holds the towel from a certain way where the water climbs down