Answer:
the airspeed indicated by the pitot-tube driven airspeed indicator is 91.23m/s
Explanation:
Pitot tube

U = velocity(m/s)
= stagnation pressure (pa)
= static pressure (pa)
d = fluid density(kg/m³)

v = true velocity
= 101325 + 1/2(1.225)(25)²


d = 1.225kg/m³

the airspeed indicated by the pitot-tube driven airspeed indicator is 91.23m/s
Answer:
The maximum temperature rise = 0.047 °C
Explanation:
Potential Energy, P = mgh
Energy transfered, Q=mcΔT
Potential energy = Energy transfered
mgh = mcΔT
gh = cΔT
ΔT = gh/c
ΔT = (9.81 * 20) / 4186
ΔT = 0.047 °C
Answer:
a) t=24s
b) number of oscillations= 11
Explanation:
In case of a damped simple harmonic oscillator the equation of motion is
m(d²x/dt²)+b(dx/dt)+kx=0
Therefore on solving the above differential equation we get,
x(t)=A₀
where A(t)=A₀
A₀ is the amplitude at t=0 and
is the angular frequency of damped SHM, which is given by,

Now coming to the problem,
Given: m=1.2 kg
k=9.8 N/m
b=210 g/s= 0.21 kg/s
A₀=13 cm
a) A(t)=A₀/8
⇒A₀
=A₀/8
⇒
applying logarithm on both sides
⇒
⇒
substituting the values

b) 

, where
is time period of damped SHM
⇒
let
be number of oscillations made
then, 
⇒
Running on sand requires 1.6 times more energy spent than running on hard surface, so the force applied by our foot on sand is less.
Answer:
0.166 rad/s
Explanation:
See attachment for calculations