<span> Using conservation of energy
Potential Energy (Before) = Kinetic Energy (After)
mgh = 0.5mv^2
divide both sides by m
gh = 0.5v^2
h = (0.5V^2)/g
h = (0.5*2.2^2)/9.81
h = 0.25m
</span>
Answer:
(a) v = 5.42m/s
(b) vo = 4.64m/s
(c) a = 2874.28m/s^2
(d) Δy = 5.11*10^-3m
Explanation:
(a) The velocity of the ball before it hits the floor is given by:
(1)
g: gravitational acceleration = 9.8m/s^2
h: height where the ball falls down = 1.50m

The speed of the ball is 5.42m/s
(b) To calculate the velocity of the ball, after it leaves the floor, you use the information of the maximum height reached by the ball after it leaves the floor.
You use the following formula:
(2)
vo: velocity of the ball where it starts its motion upward
You solve for vo and replace the values of the parameters:

The velocity of the ball is 4.64m/s
(c) The acceleration is given by:


The acceleration of the ball is 2874.28/s^2
(d) The compression of the ball is:

THe compression of the ball when it strikes the floor is 5.11*10^-3m
Answer:
t=2.10 s
u= 47.40 m/s
Explanation:
given that
h= 21.8 m
x= 101 m
g=9.8 m/s²
Lets take horizontal speed of ball = u m/s
The vertical speed of the car at initial condition is zero ( v= 0).
We know that

v= 0 m/s

now by putting the values
21.8 = 1/2 x 9.8 x t²
t=2.10 s
This is time when ball was in motion.
Now in horizontal direction
x = u .t
101 = u x 2.1
u= 47.40 m/s
Answer:
10mm
Explanation:
According to Hooke's law which states that "the extension of an elastic material is directly proportional to the applied force provided the elastic limit is not exceeded. Direct proportionality there means, increase/decrease in the force leads to increase/decrease in extension.
Mathematically, F = ke where;
F is the applied force
k is the elastic constant
e is the extension
from the formula k = F/e
k = F1/e1 = F2/e2
Given force of 1N indents the spring inwards by 2mm, this means force of 1N generates extension of 2mm
Let F1 = 1N e1 = 2mm
The extension that will be produced If force of 5N is applied to the string is what we are looking for. Therefore F2 = 5N; e2= ?
Substituting this values in the formula above we have
1/2=5/e2
Cross multiplying;
e2 = 10mm
This shows that we must have dent it by 10mm before it pushes outwards by a 5N force
Answer:
False.
Explanation:
Yes the magnitude of a vector is always positive , but a vector consists of
when two vectors are added their direction may be opposite to each other For example-

,
then their resultant

This resultant vector's x and y component equal to y and x component of vector b so its magnitude will be equal to magnitude of vector b.
Therefore, the resultant magnitude not necessary equal to the magnitude of either vector.