Dipper effect of an oncoming train get louder as it approaches and sound diminishes as it goes away sound traveling
The answer that is got 8.7 . I got that because if you divide 200 by 23 you get <span>8.69565217391 and if you round that you get 8.7</span>
Answer:
29.412m/s
Explanation:
where F= force, m= mass, and a=acceleration
we also know that,
a = Δv / t where Δv = change in velocity and t = time
thus F = m ( Δv / t)

Δv
29.412m/s=Δv
Answer: hello the complete question is attached below
answer :
r2 = 4r1
Explanation:
Electric field strength = F / q
we will assume the rod has an infinite length
For an infinitely charged rod
E ∝ 1/ r
considering two electric fields E1 and E2 at two different locations as described in the question
E1/E2 = r1/r2 ----- ( 2 )
<u>Calculate for r2 when E2 = E1/4 </u>
back to equation 2
E1 / (E1/4) = r1 / r2
∴ r2 = 4r1