Answer:
Explanation:
V₀ = 0 m/s
V = 41 m/s
S = 480 m
___________
a - ?
Distance traveled:
S = (V² - V₀²) / (2*a)
Acceleration :
a = (V² - V₀²) / (2*S)
a = (41² - 0²) / (2*480) = 1.75 m/s²
C) light waves travel faster than sound waves
You were correct
Answer:
Potential energy = 14.7 Joules.
Explanation:
Given the following data;
Mass, m = 1kg
Height, h = 1.5m
We know that acceleration due to gravity is equal to 9.8m/s²
Potential energy can be defined as an energy possessed by an object or body due to its position.
Mathematically, potential energy is given by the formula;

Where, P.E represents potential energy measured in Joules.
m represents the mass of an object.
g represents acceleration due to gravity measured in meters per seconds square.
h represents the height measured in meters.

Substituting into the equation, we have;

P.E = 14.7 Joules.
Answer:
The tabletop is smooth so my finger is down it fast and easy. The fabric however slowed my finger down considerably, and it was harder for me to move my finger across it.
Explanation:
Hope this helps.
To solve this problem it is necessary to apply the concepts related to frequency as a function of speed and wavelength as well as the kinematic equations of simple harmonic motion
From the definition we know that the frequency can be expressed as

Where,


Therefore the frequency would be given as


The frequency is directly proportional to the angular velocity therefore



Now the maximum speed from the simple harmonic movement is given by

Where
A = Amplitude
Then replacing,


Therefore the maximum speed of a point on the string is 3.59m/s