It increases confidence because the more times you conduct the same experiment over and over should either prove your hypothesis right and wrong and eliminate any random occurrences that might affect your results.
The bullet travels a horizontal distance of 276.5 m
The bullet is shot forward with a horizontal velocity
. It takes a time <em>t</em> to fall a vertical distance <em>y</em> and at the same time travels a horizontal distance <em>x. </em>
The bullet's horizontal velocity remains constant since no force acts on the bullet in the horizontal direction.
The initial velocity of the bullet has no component in the vertical direction. As it falls through the vertical distance, it is accelerated due to the force of gravity.
Calculate the time taken for the bullet to fall through a vertical distance <em>y </em>using the equation,

Substitute 0 m/s for
, 9.81 m/s²for <em>g</em> and 1.5 m for <em>y</em>.

The horizontal distance traveled by the bullet is given by,

Substitute 500 m/s for
and 0.5530s for t.

The bullet travels a distance of 276.5 m.
The formula we need to use is displacement.
, where xf is final position and xi is initial position.
We report the final position of 5 and the displacement of 2 so the formula is now:
.
So the initial position of truck A is 3.
Hope this helps.
r3t40
Answer:
v = (10 i ^ + 0j ^) m / s, a = (0i ^ - 9.8 j ^) m / s²
Explanation:
This is a missile throwing exercise.
On the x axis there is no acceleration so the velocity on the x axis is constant
v₀ₓ = 10 m / s
On the y-axis velocity is affected by the acceleration of gravity, let's use the equation
v_y =
- g t
at the highest point of the trajectory the vertical speed must be zero
v_y = 0
therefore the velocity of the body is
v = (10 i ^ + 0j ^) m / s
the acceleration is
a = (0 i ^ - g j⁾
a = (0i ^ - 9.8 j ^) m / s²