Oh your from the other question you made I just saw it LOL.
But heres the answer click the 3 dots on the question you made or you can ask a Moderator or Administrator to remove your question with a reason.
Answer:
2.5 m/s
Explanation:
There are calculators online that can help you easily calculate the accerlation.
Answer:
D. 12.4 m
Explanation:
Given that,
The initial velocity of the ball, u = 18 m/s
The angle at which the ball is projected, θ = 60°
The maximum height of the ball is given by the formula
h = u² sin²θ/2g m
Where,
g - acceleration due to gravity. (9.8 m/s)
Substituting the values in the above equation
h = 18² · sin²60 / 2 x 9.8
= 18² x 0.75 / 2 x 9.8
= 12.4 m
Hence, the maximum height of the ball attained, h = 12.4 m
Answer:
a) x = (0.0114 ± 0.0001) in
, b) the number of decks is 5
Explanation:
a) The thickness of the deck of cards (d) is measured and the thickness of a card (x) is calculated
x = d / 52
x = 0.590 / 52
x = 0.011346 in
Let's look for uncertainty
Δx = dx /dd Δd
Δx = 1/52 Δd
Δx = 1/52 0.005
Δx = 0.0001 in
The result of the calculation is
x = (0.0114 ± 0.0001) in
b) You want to reduce the error to Δx = 0.00002, the number of cards to be measured is
#_cards = n 52
The formula for thickness is
x = d / n 52
Uncertainty
Δx = 1 / n 52 Δd
n = 1/52 Δd / Δx
n = 1/52 0.005 / 0.00002
n = 4.8
Since the number of decks must be an integer the number of decks is 5
Answer:
The motion is over-damped when λ^2 - w^2 > 0 or when
> 0.86
The motion is critically when λ^2 - w^2 = 0 or when
= 0.86
The motion is under-damped when λ^2 - w^2 < 0 or when
< 0.86
Explanation:
Using the newton second law
k is the spring constante
b positive damping constant
m mass attached
x(t) is the displacement from the equilibrium position

Converting units of weights in units of mass (equation of motion)

From hook's law we can calculate the spring constant k

If we put m and k into the DE, we get

Denoting the constants
2λ =
= 
λ = b/0.215

λ^2 - w^2 = 
This way,
The motion is over-damped when λ^2 - w^2 > 0 or when
> 0.86
The motion is critically when λ^2 - w^2 = 0 or when
= 0.86
The motion is under-damped when λ^2 - w^2 < 0 or when
< 0.86