Answer is: D. 6.02 x 1023.
Because this is Avogadro constant<span> (the number of </span>constituent particles, in this example atoms of gold<span> that are contained in the </span>amount of substance<span> given by one </span>mole). <span>The </span>mole<span> is the </span>unit of measurement<span> for </span>amount of substance, t<span>he mole is an </span>SI base unit<span>, with the unit symbol </span>mol<span>.</span>
Data:
m (<span>Sample Mass) = ?
n (</span><span>Number of moles) = 0.714 mol
MM (Molar Mass) of </span>Mercury (I) Chloride (

)
Hg = 2*200.59 = 401.18 amu
Cl = 2*35.453 = 70.906 amu
----------------------------------------
Molar Mass

= 401.18 + 70.906 = 472.086 ≈ 472.09<span> amu or 472.09 g/mol
</span>
Formula:

Solving:



Answer:
By approximation would be letter
D) <span>
337.2 g</span>
Search web will get a superb answers for it than individuals opinion
The correct answer for the question that is being presented above is this one: "<span>0.3."
Here it is how to solve.
M</span><span>olecular mass of Ar = 40
</span><span>Molecular mass of Ne = 20
</span><span>Number of moles of Ar = 9.59/40 = 0.239
</span><span>Number of moles of Ne = 11.12/20= 0.556
</span><span>Mole fraction of argon = 0.239/ ( 0.239 + 0.556) = 0.3</span><span>
</span>
Your answer would be answer choice D. The ball is accelerating as the velocity is increasing at a constant rate.
Hope this helps,
♥<em /><em>A.W.E.<u>S.W.A.N.</u></em>♥