0.428571429 moles is your exact answer. Hope this helps!!! (:
<span>1. </span>To solve this we assume
that the gas is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 =P2V2
V2 = P1 x V1 / P2
V2 = 104.1 x 478 / 88.2
<span> V2 =564.17 cm^3</span>
Sugar. It is solid and its atoms have less kinetic energy to overcome the bonding force. So, the bonding force is stronger than water, which is liquid and has more kinetic energy to overcome the bonding force of atoms. So, water has less strong force of attraction. Hence, sugar has stronger forces of attraction.
Answer:
D. ionic sodium phosphate (Na3PO4)
Explanation:
Molecule for molecule, the solute that raises the boiling point of water the most is the one that makes the most particles in the solution. Lithium chloride breaks up into two ions (Li+ and Cl-). So does sodium chloride (Na+ and Cl-). Molecular molecules don't break up at all, so sucrose has only 1 particle per molecule. Sodium phosphate makes 4 total particles (3 Na+ ions and 1 PO4^3-). And magnesium bromide would make 3 particles (1 Mg2+ and 2 Br-). So the most is 4.