Answer:
Balancing chemical equation means making a number of atoms or molecules equal on both sides. In other words, this means that the number of atoms and molecules of each reacting element needs to be the same as the number of atoms and molecules of those elements in the product.
Our reaction is:
AlBr3 + K2SO4 -> KBr + Al2(SO4)3
and we need to balance it.
Since there are 3 molecules of SO4 in the product we need to put 3 before the reactant K2SO4. There are also 2 atoms of Al in the product, so we need to put 2 in front AlBr3. Now we have 6 atoms of K and Br on the left side, so we need to put 6 in front of KBr in the product.
So, our balanced equation will look like this:
2AlBr3 + 3K2SO4 -> 6KBr + Al2(SO4)3
Answer:
Your answer would be C.
Explanation:
Gamma radiation, unlike alpha or beta, does not consist of any particles, instead consisting of a photon of energy being emitted from an unstable nucleus. Having no mass or charge, gamma radiation can travel much farther through air than alpha or beta, losing (on average) half its energy for every 500 feet.
Answer:
The stronger conjugate base will be the weaker acid; i.e., the acid with the smaller Ka-value.
Explanation:
Given conjugate base CN⁻ => weak acid => HCN => Ka =4.9 x 10⁻¹⁰
Given conjugate base OCN⁻ => weak acid=> HOCN => Ka = 3.5 x 10⁻⁴
Ka(HCN) << Ka(HOCN) => CN⁻ is a much stronger conjugate base than OCN⁻
There are 3 sig figs. 8 and 2 are obvious. The ending 0 is significant because it is at the end of a decimal number, and doesn't have to be measured.
Protons and neutrons
electrons just revolve around it