Answer:
Water lowers the strength and cohesion of clay-rich regolith or soil.
Explanation:
Water can seep into the soil or clay-rich regolith and replace the air in the pore space of the soil or regolith. Water will completely surrounds all the grains of the clay-rich regolith and breaks the bonds in between the grains, that is eliminating all grain to grain contact of the regolith. When the regolith becomes saturated with water, the angle of repose is reduced to very small values and the regolith tends to loose its form.
<span>Since the early 1990s, geneticists have produced "genetically modified" crops that yield fruits and vegetables commonly found in U.S. supermarkets. Genetically modified plants (and also applicable to animals) in agriculture are those plants whose DNA are being modified using genetic engineering techniques.</span>
Answer: I think it is 94.6 degrees Celsius
Explanation:
Answer:

Explanation:
To convert from grams to moles, we must use the molar mass. This can be found on the Periodic Table. First, find the molar mass of iron and chlorine.
- Fe: 55.84 g/mol
- Cl: 35.45 g/mol
Check the formula. There is a subscript of 3 after Cl, so there are 3 atoms of chlorine in 1 molecule. Multiply iron's molar mass by 3, then add iron's molar mass.
- FeCl₃: 55.84 + 3(35.45) = 55.84+106.35=162.19 g/mol
Use this number as a ratio.

Multiply by the given number of grams.

Flip the ratio so the grams of iron (III) chloride cancel.




The original measurement of grams has 5 significant figures, so our answer must have the same. For the number we calculated, that is the ten thousandth place.

258.45 grams is approximately 1.5935 moles of iron (III) chloride.
Answer : The net ionic equation will be,
Explanation :
First we have to balance the chemical reaction.
The given balanced ionic equation will be,
In the net ionic equations, we are not include the spectator ions in the equations.
Spectator ions : The ions present on reactant and product side which do not participate in a reactions. The same ions present on both the sides.
The ionic equation in separated aqueous solution will be,
In this equation,
are the spectator ions.
By removing the spectator ions from the balanced ionic equation, we get the net ionic equation.
The net ionic equation will be,